
A Software Ar
hite
ture for Programming

Roboti
 Systems based on the Dis
rete

Event System Paradigm

Antonio C. Dom��nguez-Brito

1�

, Magnus Andersson

2y

,

and Henrik I. Christensen

2z

CVAP244, Te
h. Rep. ISRN KTH/NA/P{00/13{SE

Centre for Autonomous Systems, KTH (Royal Institute of Te
hnology)

S-100 44 Sto
kholm, Sweden, September 2000

1

University of Las Palmas de Gran Canaria, Spain

2

Centre for Autonomous Systems, KTH, Sweden

Abstra
t

Transfer and reuse of software designed spe
i�
ally to
ontrol roboti

systems is diÆ
ult, and often apparently impossible due to the diver-

sity of hardware and software typi
ally involved. Software reuse is not

only a problem of roboti
 systems. In other �elds, as business soft-

ware, "de fa
to" standard tools to de�ne software
omponents
an be

found, and a supplier
omponent software industry even exists. On the

ontrary in the roboti
 �eld there are not any established standards to

address this problem. The present work has been addressed to estab-

lish grounds to
on
eive what
ould be a feasible
on
ept of software

omponent for roboti
s systems.

Software for
ontrol roboti
 systems may be very heterogeneous,

involving numerous devi
es and software, but, from a generi
 point

of view, it
an be
onsidered as a network of weakly
oupled parallel

and/or
on
urrent a
tive entities { pro
esses or threads { intera
ting

asyn
hronously among them in some way. In this do
ument is pre-

sented a software model whi
h identi�es these a
tive entities with soft-

ware
omponents and de�nes their intera
tion, modeling su
h entities

as port automata, and their intera
tion through a small set of opera-

tors taken from pro
ess algebra. This software framework is presented

along with a prototypi
al example, an obsta
le avoidan
e behavior for

a mobile robot, illustrating that transfer and reuse of
ode is possible

using this software ar
hite
ture.

�

a
dbrito�dis.ulpg
.es

y

sungam�nada.kth.se

z

hi
�nada.kth.se

1

1 INTRODUCTION 2

1 Introdu
tion

Transfer and reuse of software designed spe
i�
ally to
ontrol roboti
 sys-

tems is diÆ
ult, and often apparently impossible due to the diversity of hard-

ware and software typi
ally involved. Development from s
rat
h is not an

un
ommon situation in many systems, even at the same laboratory. Other

times an important software integration e�ort must be done to reutilize

software.

Software reuse is not only a problem of roboti
 systems. In other �elds, as

business software, "de fa
to" standard tools to de�ne software
omponents

an be found, { e.g., A
tiveX from Mi
rosoft { and a supplier
omponent

software industry even exists. On the
ontrary in the roboti
 �eld there are

not any established standards to address this problem.

During last years a boosting of hardware features along with a de
rease

of pri
es has
reated a big demand for day-to-day roboti
s appli
ations,

and has eviden
ed the la
k of standard tools to fa
ilitate the design and

implementation of roboti
s systems, and also to de�ne software
omponents

for roboti
 systems.

A software
omponent should be something like an ele
troni

omponent

or
hip in ele
troni
 industry. It is many years that o�-the-shelf
hips
an

be bought and deployed in other parts of the world. Ea
h
omponent has

a
lear fun
tionality and a well established external interfa
e. Furthermore,

numerous standard tools exist to design ele
troni
 devi
es based on the

omposition, assembly and
ombination of these ele
troni

omponents. A

similar panorama would be desirable for the roboti
 industry.

The present work has been addressed to establish grounds to
on
eive

what
ould be a feasible
on
ept of software
omponent for roboti
s systems,

and on
e ideas were
on
eived, to try to put them into pra
ti
e.

Previous work has been
arried out on software ar
hite
tures being able

to grasp the inherent features of roboti
 systems, and in turn, to map sys-

tems designs into working implementations. A large resear
h e�ort has been

devoted to hybrid ar
hite
tures for autonomous mobile robots { for exam-

ple, ISR [1℄, AuRA [2℄ [3℄, RAP [4℄, ATLANTIS [5℄, Saphira [6℄, and

G

en

oM [7℄ {, whi
h have usually three layers: the bottom layer or rea
-

tive layer, the intermediate layer or task
ontrol layer and the top layer or

deliberative layer. The rea
tive layer is the
losest to the hardware, so it

deals dire
tly with sensors and a
tuators, and tries to embody system be-

haviors. Typi
ally, the behaviors
orrespond to software modules or a sort

of
ombination of them. The se
ond layer is a sequen
er of behaviors in the

lower layer. The task exe
ution layer is in
harge of initiating,
ombining,

and monitoring behaviors to a
hieve tasks de�ned in terms of rea
tive layer

behaviors. Last layer, the deliberative one, is usually responsible for long-

term deliberative planning, where plans are de�ned in terms of task
arried

out by the se
ond layer.

1 INTRODUCTION 3

The mentioned hybrid ar
hite
tures
on
ern with layers intera
tion, be-

haviors integration, sequen
ers and planners. The present work must be

onsidered in this
ontext, sin
e it has been motivated by one of these ar-

hite
tures { ISR [1℄ {, but it is intended to look for a
on
ept of a generi

software
omponent for roboti
 systems, giving roboti
 developers the
a-

pa
ity to design and implement systems through
ombination, assembly and

omposition of them, and at the same time, being able to grasp the inher-

ent parti
ularities of roboti
 software, that is, ability to deal with di�erent

hardware and software. Su
h
omponents would just be another level of

abstra
tion between design and implementation, in developer hands, to im-

plement roboti
 systems.

Typi
ally, roboti
 systems software
an be seen as a network of parallel

and/or
on
urrent a
tive entities, pro
esses or threads, intera
ting asyn-

hronously among them in some way. A software model whi
h identi�es

these a
tive entities with software
omponents, and de�nes their intera
-

tion, is presented in this do
ument. In this model, these a
tive entities are

weakly
oupled, so the global system behavior is the result of the intera
tion

among the entities, and also of the lo
al behavior of these ones, therefore,

on
e the fun
tionality of ea
h parti
ular entity has been de�ned, the global

ontrol s
heme resides on how these entities intera
t on ea
h spe
i�
 system,

and thus, on the
on�guration of its network of parallel and/or
on
urrent

a
tive entities. The
on
ept to model these a
tive entities has been taken

from the Dis
rete Event Systems { DES { framework [8℄. Ea
h entity is

embodied as a thread, and modeled as a Port Automaton [9℄ [10℄ [11℄. In

this framework, these entities has been
alled simple DESs or just DESs, and

their
ombination and intera
tion de�nes the behavior of the whole system.

A small set of operators taken from pro
ess algebra [12℄ [13℄, has been used

to formalize
ompositions of DESs, su
h assemblages de�ne what has been

alled
ompound DESs, and
an be used as DESs in other assemblages or

ombinations.

Another port automata based software ar
hite
ture has been developed

at CMU [14℄ [15℄. It was mainly addressed to a
hieve re
on�gurability

and software reutilization for real time systems,
on
retely, a re
on�gurable

roboti
 arm. It de�nes a software
omponent, the port obje
t, relies on ser-

vi
es of a spe
i�
 real time operating system, Chimera [16℄ [17℄, for software

assembly, and was designed for a parti
ular hardware set: real time pro
ess-

ing units and VME buses. The work presented in this paper pursuits has

also de�ned a software
omponent based on port automata theory, but there

are no assumptions about a spe
i�
 operating system with a parti
ular set

of servi
es relying on a espe
ial hardware set. The only assumption is that

the operating system must support multithreading.

Next se
tion, se
tion 2, exposes brie
y the motivations and goals. Se
-

tion 3 provides the formal and theoreti
al grounds whi
h
onform the
on-

eptual model of the software ar
hite
ture, and at the same time, introdu
es

2 MOTIVATIONS AND GOALS 4

a prototypi
al example whi
h will be used along the rest of the do
ument.

Se
tion 4 illustrates the software ar
hite
ture itself through its use with

the example previously introdu
ed. Finally, on se
tion 5,
on
lusions are

exposed, and
urrent software framework limitations and probable future

trends are indi
ated.

2 Motivations and Goals

Reutilization and deployment of software for roboti
s systems should be as

easy as buying ele
troni

omponents to make your own ele
troni
 designs.

A similar panorama
an be found in business
omputing, where a software

omponents industry is rising.

The former paragraph resumes the motivations and goals of the work

presented here, and as starting goals to understand the insights of the prob-

lem, the following obje
tives were established:

� Formalizing and devising a
on
ept of software
omponent, spe
i�

to roboti
 systems, whi
h should be reusable and deployable, de�ning

deployable as software whi
h
an be transferred and stati
ally added to

any proje
t, meaning that the software
an be transferred to another

system at linking time without having to add new "glue"
ode [14℄ to

interfa
e the
omponent to the rest of the system, obtaining the same

fun
tionality that was a
hieved when it was
reated and tested �rst.

� Formalizing and devising
ombinations or assemblages of these soft-

ware
omponents being possible that su
h
ombinations
an be reuti-

lized, deployed and
ombined in the same manner that simple
ompo-

nents
an be.

Thus, the aim is to design a software ar
hite
ture whi
h is able to embody

in implementations the
on
epts expressed in the former two points, and also

able to test su
h ideas in real roboti
 systems.

3 The Con
eptual Model

As it was mentioned earlier in se
tion 1, the introdu
tion, the software typ-

i
ally involved in the
ontrol of roboti
 systems may be very heterogeneous,

involving numerous hardware devi
es and software. Su
h a heterogeneity

ould be abstra
ted through a model of intera
tion among the di�erent ele-

ments
omposing the system, thus, from this point of view, a roboti
 system

might be
onsidered as a network of weakly
oupled parallel and/or
on-

urrent a
tive entities { pro
esses or threads { intera
ting asyn
hronously

among them in some way. This intera
tion among entities and the lo
al

behavior of ea
h one de�ne tasks to a
hieve by ea
h spe
i�
 roboti
 system.

3 THE CONCEPTUAL MODEL 5

This
on
ept of a
tive entity has been identi�ed as the software
omponent

to be modeled.

To formalize this weakly
oupled parallel/
on
urrent a
tive entity, as a

software
omponent, the
on
ept of port Automaton [9℄ has been used. Fur-

thermore, to a
hieve tasks it is ne
essary to
ombine automata
onforming

an automata network. The
on
ept of port automaton establishes a
lear

external interfa
e, its ports, for external intera
tion among port automata,

but, it is also needed a formal framework to express how these automata

relate ea
h other in run time. A small set of operators has been taken from

pro
ess algebra [12℄ [13℄ to de�ne a
omposition of port automata. These

operators allow us to assert that the
omposition is also a port automaton,

as its
omponents.

Two key
on
epts have been devised to map port automata and their

ombinations to real software implementations: the
on
ept of a simple DES

{ Dis
rete Event System { or DES whi
h models a port automaton, and

what will be de�ned as a Compound DES, whi
h formalizes a
omposition

of DESs and/or another Compound DESs.

These two key
on
epts will be presented in next subse
tions, and at

the same time, to illustrate how this model
an be used in a real system,

an example will be presented. Con
retely, the example will show how an

obsta
les avoidan
e behavior for a mobile robot might be implemented using

this
on
eptual framework.

3.1 DESs

A Simple DES de�nes a parallel or
on
urrent a
tive entity { a pro
ess

or a thread { as a Port Automaton [9℄, i.e., a Finite State Automaton {

FSA { that uses ports for all external
ommuni
ation. This FSA exe
utes

asyn
hronously transiting among states as a result of its own a
tivity or

upon re
eption of events/signals through its input ports.

Thus the port automaton
on
ept establishes a
lear distin
tion between

the internal fun
tionality of an a
tive entity { its FSA { and its external

interfa
e { its ports {.

From [9℄ and [13℄, a port automaton P
an be formally de�ned as a

generator G = (L;Q; �; Æ; �;X; Y; F), where:

� L is the set of ports.

� Q is the set of states.

� � � Q is the set of initial states.

� X = fX

i

: i 2 Lg, where X

i

is the input set for port i.

� Y = fY

i

: i 2 Lg, where Y

i

is the output set for port i.

3 THE CONCEPTUAL MODEL 6

� Æ : Q� t

i2L

X

i

! Q is the transition map, where

t

i2L

X

i

= f(x; i) : x 2 X

i

g is the disjoint union of the X

i

's.

� � = f�

i

: i 2 Lg, where �

i

: Q! Y

i

is the output map for port i.

� F � Q is the set of �nal states.

All subje
t to the axiom that for ea
h q 2 Q : fx 2 X

i

: Æ(q; (x; i)) 6=

;g = ; or X

i

assuring that, in any state q 2 Q, for any port i, either all

elements of the input set X

i

will be
apable of being a

epted or none of

them will.

In our framework, L = L

i

[L

o

su
h that L

i

\ L

o

= ;, where L

i

is

the set of input ports, and L

o

is the set of output ports. A port pa
ket

is de�ned as an information unit whi
h
an be re
eived through an input

port, and/or issued through an output port. So, elements of sets X

i

's and

Y

i

's,
orresponding to ea
h input and output port respe
tively, will be all

possible port pa
kets re
eived or issued through su
h ports. Port pa
kets

are also
lassi�ed in types of ports pa
kets, and only one type of port pa
ket

an be asso
iated with ea
h input or output port.

Figure 1 depi
ts a port automaton, a DES, from an external point of

view, where the port automaton is represented by a
ir
le, input ports by

arrows oriented towards the
ir
le, and output port by arrows oriented out-

wards. This �gure depi
ts how the internals of a port automaton are isolated

from outside by using the me
hanism of ports. Figure 2 shows the internal

view of a generi
 DES, the
ir
les are the states of the automaton and the

arrows, transitions among its states based on port pa
kets re
eived through

its input ports. In the �gure p

ij

denotes that a port pa
ket j of type i

has been re
eived through an input port. The �gure does not illustrate the

automaton fun
tionality, only displays its states and transitions.

i1

in

o1

om

Figure 1: The external

view of a DES (the
ir
le):

input and output ports

(the oriented arrows).

1

si

s2 sj

sk

p
ab

p
cd

p
ef

p

s

gh

Figure 2: The internal generi
 view

of a DES: states (
ir
les) and transi-

tions (oriented arrows) provoked by

port pa
kets. Double
ir
les mean �-

nal states.

3 THE CONCEPTUAL MODEL 7

3.1.1 Default Ports, Default States and the Default Automaton

The model establishes two default ports and six default states for all DES.

The default ports are: the
ontrol port,
, and the monitoring port m. The

default states are: idle, running, abort, su

ess, fail and dead.

Figure 3 depi
ts the default ports. The
ontrol port
 is an input port

used to for
e a state in a DES. The states whi
h
an only be for
ed exter-

nally are running, abort and dead. Control pa
kets are the kind of port

pa
kets re
eived in this port. The monitoring port m is an output port

used by ea
h DES to indi
ate its internal state
hanges. Ea
h time a state

hange happens in a DES a monitoring port pa
ket, indi
ating this
hange,

is emitted through this port. Therefore, whi
h these two ports,
ontrol and

monitoring of ea
h DES is possible.

1i

in

o1

ok

c m

Figure 3: The default ports. The

ontrol port
 and the monitoring

port m.

In our framework ea
h DES is a thread and is modeled through the

same automaton stru
ture, the Default Automaton, as shown in �gure

4. The idle state is the starting state. There, the thread
orresponding

the DES has been laun
hed and resour
es has been allo
ated for it, but is

suspended waiting on its
ontrol port. The running state, in dashes in the

�gure, represents the not yet de�ned part of the automaton whi
h is really

in
harge of giving fun
tionality to ea
h DES { later referred to as the user

automaton {. This state just depi
ts the states and transitions that should

be established by the developer/user. To go into running state a running

ontrol pa
ket,

r

, must for
e the state
hange. When a DES in running

state is interrupted or aborted, the DES makes a transition to the abort

state. An abort
ontrol pa
ket,

a

an only for
e this
hange. A DES whi
h

�nishes su

essfully its work, goes to su

ess state, the transition to this

state must be done by the DES itself. A fail state is rea
hed when the DES

fails its task, and as with the su

ess state, the
hange must only be an

own initiative of the DES itself. The two former states
an not be for
ed

using the
ontrol port. From idle, abort, su

ess and fail states the DES

is suspended waiting on its
ontrol port keeping thread resour
es. From

3 THE CONCEPTUAL MODEL 8

these states, a running
ontrol pa
ket makes the DES get into running

state, and a dead
ontrol pa
ket,

d

, brings it to dead state whi
h means

resour
es release and self destru
tion, and is the unique �nal state.

How it was established at the beginning of se
tion 3.1, in our model

of dis
rete event systems, events are modeled as port pa
kets, so internal

events, i.e. transitions originated by the DES itself, are also modeled by port

pa
kets, ex
ept that, in this
ase, the involved input and output ports are

only used for internal
ommuni
ations. In parti
ular, ea
h modeled internal

event will have asso
iated an input port and an output port, thus, when the

DES itself provokes the internal event, it sends out its
orresponding port

pa
ket through its asso
iated output port and will re
eive the same port

pa
ket through the asso
iated input port,
ompleting, in su
h a way, a tran-

sition. Examples of these kind of events are the transitions to su

ess and

fail states in �gure 4. The ports asso
iated with port pa
kets
orresponding

to internal events are not shown in automaton �gures along this do
ument,

but it is assumed that all internal events are modeled like this.

Thus, a DES is a generator G, where by default
 2 L

i

, m 2 L

o

,

fidle; running; su

ess;abort; fail;deadg � Q, � = fidleg, f

r

;

a

;

d

g

� X, is the input set for
, internal port pa
kets su

ess and fail are

also in
luded in X, the monitoring port pa
kets are in
luded in Y , and

are the output set for m, Æ

default

� Æ is de�ned a

ording to �gure 4, and

F = fdeadg. The default automaton de�nes two new sets of states:

� S = fsu

essg � Q, is the set of fun
tional su

essful states, whi
h

means that the automaton has �nished its task su

essfully.

� U = fabort; failg � Q, is the set of fun
tional unsu

essful states,

whi
h means that the automaton has ended up its task with unsu
-

essful results.

In [13℄ the sets S and U are the sets F

s

and F

u

, respe
tively, su
h that

F = F

s

[F

u

where F

s

\ F

u

= ;. In this framework, S \ U = ;, but S and

U are not in
luded in F , be
ause a

ording to �gure 4, the automaton does

not �nish when it rea
hes the states in
luded in both sets, and it
an be

brought to running state again for a new task exe
ution.

3.1.2 Input and Output Ports, States and Transitions

Non default input and output ports, i

i

's and o

i

's respe
tively in �gure 3,

are user de�ned, in
luding all its types of port pa
kets. Non default states

and transitions among them are also user de�ned. Formally, for ea
h DES,

the following sets are user de�ned:

� L

i

�f
; su

ess

i

; fail

i

g = fi

i

g, i 2 f1; : : : ; ng is the set of non default

input ports.

3 THE CONCEPTUAL MODEL 9

deadfailrunning

abort

idle

success

cd

cr

ca

cd

cd

cd

success

ca

cr

cr

cr

fail

Figure 4: The Default Automaton.

� L

o

� fm; su

ess

o

; fail

o

g = fo

i

g, i 2 f1; : : : ; kg is the set of non

default output ports.

� (X �f

r

;

a

;

d

; su

ess; failg)[(Y �f monitoring port pa
kets g) is

the set of non default port pa
kets.

� Q � fidle; running; su

ess;abort; fail;deadg is the set of non de-

fault states.

� Æ�Æ

default

is the transition map based on non default input ports, and

not established in �gure 4.

� and �, the output map.

where su

ess

i

and su

ess

o

, and fail

i

and fail

o

are, respe
tively, the

orresponding input and output ports for modeling internal events su

ess

and fail.

3.1.3 Input and Output Parameters

A running port pa
ket,

r

,
an transport an input parameter. Input

parameters are user de�ned data, and
an be used to
on�gure or initialize

ea
h DES at the beginning of ea
h task exe
ution. When a DES rea
hes

its su

essful state, su

ess, it sends a monitoring port pa
ket through its

portm, whi
h
an transport an output parameter. As input parameters,

output parameters are also user de�ned data for ea
h DES, and
an be used

as input parameters for other/s DES/s.

3 THE CONCEPTUAL MODEL 10

3.1.4 DES Examples: the Sensors, an Obsta
les Dete
tor and

the Avoid DES

Several DESs have been devised to show how to implement an obsta
le

avoidan
e behavior for a mobile robot using this framework. This example

involves three types of sensors: a belt of sonars, a laser range �nder and a

stereo roboti
 head,
orresponding ea
h one of them with a DES. Besides,

there are another two additional DESs: an obsta
le dete
tor and a generator

of avoidan
e traje
tories, the avoid DES. All of them will be presented next.

The sensors will be modeled sharing the same DES stru
ture, the generi

sensor. Figure 5 shows the DES automaton for the generi
 sensor, the �g-

ure only displays user de�ned states and transitions based on user de�ned

input ports. Noti
e that what is shown in the �gure would be the running

state in �gure 4, the default automaton, whi
h is hosting the DES, that is,

the automaton in the �gure must be
onsider into the
ontext of the default

automaton. The running pseudo state in the default automaton
onsti-

tutes or represents the part of the automaton whi
h must be
ompleted by

the user, whi
h is a sensor in �gure 5, and will be referred to as the user

automaton. That means that from every state in the user automaton a

transition to abort state in the default automaton is possible, just re
eiving

an abort
ontrol pa
ket,

a

, and also, from all of them it is possible to tran-

sit to states su

ess and fail, although in su
h
ases it must be expli
itly

spe
i�ed by the user. Additionally, the starting state in the user automaton

is the entry state where the default automaton gets into when a running

port pa
ket,

r

is re
eived. All following �gures illustrating user automata

for several DESs will not show these transitions to default automata states,

ex
ept when transitions to su

ess and fail o

ur, due to these last ones

must be spe
i�ed for ea
h DES, the other ones are assumed by default.

Returning to the generi
 sensor in �gures 5 and 6, there is only a user

de�ned input port, ti
k, whi
h
ould be a
lo
k ti
k or an interruption
om-

ing from a hardware devi
e whi
h is the sensor. The automaton only has

two user de�ned states: ina
tive and readandsend. The ina
tive state

is the entry state. Normally resour
e allo
ation is lo
alized in the entry

state, so a fail during allo
ation usually provokes a transition to default au-

tomaton state fail. On
e resour
e allo
ation is
ompleted su

essfully, the

automaton just wait for a port pa
ket through its input port ti
k to transit

to readandsend. In the readandsend state the automaton
olle
ts infor-

mation from the asso
iated sensor devi
e, then, this information is pa
ked

in port pa
kets and sent out through its output port sense. During this

sensory data
olle
tion might happen a fail on the sensor whi
h would
ause

a transition to the fail state in the default automaton. This DES never

goes to the default automaton state su

ess be
ause it has a
ontinuous

operation without a spe
i�
 goal, it only has to pro
ess sensory data, hen
e,

to �nish it, it must be aborted using an abort
ontrol pa
ket

a

. Figure 6

3 THE CONCEPTUAL MODEL 11

displays the external view of the DES sensor whi
h embodies the generi

sensor.

and
send

read

to fail state

inactive
tick

tick

fail

to fail state

fail

Figure 5: The DES automaton

for the generi
 sensor. The de-

fault automaton and the
ontrol

port are not shown.

sensor
sense

tick

Figure 6: The

generi
 DES sensor

whi
h implements

the generi
 sensor.

Control and moni-

toring ports are not

shown.

All sensors involved in the avoidan
e behavior share the same DES stru
-

ture that the generi
 sensor depi
ted in �gures 5 and 6, and they are: the

DES sonarsensor modeling the belt of sonars, the DES lasersensor mod-

eling the laser range �nder, and the DES visionsensor modeling the stereo

roboti
 head
ameras.

Figure 7 shows the DES automaton for an obsta
les dete
tor based on

information whi
h
omes from sensors modeled as the generi
 sensor pre-

sented in previous paragraphs. The ina
tive state is homologous to the

state with the same name in �gure 5. It is also an entry state, and resour
e

allo
ation is
arried out when the automaton enters into this state �rst,

so, a transition to default automaton state fail is possible. On
e resour
e

allo
ation has been done the state ina
tive is a doing-nothing state, just

waiting for sensory information. The automaton also goes into this state

when free spa
e is dete
ted, whi
h is indi
ated by port pa
kets on its in-

put port freespa
e. When sensory information gets into through the input

port sense, the automaton enters into its dete
t state, where obsta
les are

dete
ted based on sensory information, issuing obsta
le dete
tions through

its output port obsta
les. If nothing is dete
ted, a freespa
e port pa
ket is

issued through its output port freespa
e, whi
h is normally
onne
ted to

its synonymous input port freespa
e. This DES is also an automaton in

ontinuous operation, so, it does not have any transition to the default au-

tomaton state su

ess. Figure 8 shows an external view of the DES dete
t

whi
h embodies the mentioned automaton, only user de�ned input and out-

put ports are shown. Noti
e that to
ombine this DES with sensors modeled

like the generi
 sensor, is ne
essary that its input port sense transports

the same type of port pa
ket that the one emitted by these sensors through

3 THE CONCEPTUAL MODEL 12

their output port sense, see �gure 6, whi
h also implies that all sensors

should produ
e the same kind of port pa
ket on this port.

inactive

to fail state

detect

sense

freespace

sense

fail

Figure 7: The DES automaton for

an obsta
le dete
tor. The default

automaton and the
ontrol port

are not shown.

detect
sense

obstacles

freespace

freespace

Figure 8: The generi
 DES

dete
t whi
h implements an

obsta
le dete
tor. Control

and monitoring ports are not

shown.

Figure 9 shows the DES automaton for obsta
le avoidan
e. It has two

states, the ina
tive state whi
h is the entry state, analogous to the state

with the same name in �gure 5. It also
an get into the default automaton

state fail, if resour
e allo
ation fails. On
e a su

essful resour
e allo
ation

is
arried out the automaton waits for dete
ted obsta
les port pa
kets, just

to get into its se
ond state, the avoid state, where avoidan
e velo
ities for

the mobile robot motors are
omputed based on obsta
le dete
tions re
eived

through its input port obsta
les, determining an obsta
le avoidan
e traje
-

tory for the robot. Then, these velo
ities are pa
ked and sent out through

its output port velo
ities. As previous DESs, the sensor DESs and the ob-

sta
le dete
tor, this DES is also a
ontinuous operation automaton without

any transition to the default automaton state su

ess. Figure 10 depi
ts

the DES avoid only showing user de�ned input and output ports.

3.2 Compound DESs

On
e a set of DESs have been de�ned, instan
es of these ones may be utilized

to
onform a network of port automata. A Compound DES, is a
omposition

of instan
es of DESs and/or another
ompound DESs. Figure 12 explains

graphi
ally this
on
ept, where the
ompound DES
 is a
omposition of two

DES instan
es, one of DES a, a

i

, and one of DES b, b

i

, whi
h are shown

in �gure 11. Figure 13, depi
ts a
ompound DES d made of an instan
e of

ompound DES
,

i

, and an instan
e of DES b, eviden
ing that instan
es

of
ompound DESs are fun
tionally equivalents to simple DESs in terms

of
omposition and instantiation, so a
ompound DES is a port automaton

3 THE CONCEPTUAL MODEL 13

fail

to fail state

avoidinactive
obstacles

obstacles

Figure 9: The DES automaton for ob-

sta
le avoidan
e. The default au-

tomaton and the
ontrol port are not

shown.

avoid

obstacles

velocities

Figure 10: The DES

avoid whi
h imple-

ments the obsta
le

avoidan
e automaton.

Control and moni-

toring ports are not

shown.

whi
h is a
omposition of port automata. Control and monitoring ports are

not shown.

a b
i1 i1

i2

o1
o2

o1
o2

Figure 11: Two DES: a

and b.

a i bi
i1 i1

i2

o1
o2

o1
o2

i1

o1o2

c

Figure 12: The
ompound

DES
: a
omposition of a

and b.

ic bi
i1 i1

i2

o1
o2

o1
o2

i1

o1o2

d

Figure 13: The
ompound

DES d: a
omposition of

and b.

3.2.1 Exe
ution Operators

A small set of operators has been taken from pro
ess algebra [12℄ [13℄ to

de�ne a
ompound DES as a
omposition of DESs and/or
ompound DESs

3 THE CONCEPTUAL MODEL 14

instan
es, these operators allow us to assert that the
ompound DES is

also an automaton, as its
omponents, and have been
alled exe
ution

operators. In the following de�nitions, when it is said that a DES instan
e

�nishes, it is in terms of task �nalization, that is, the DES instan
e has

rea
hed a state in
luded in the sets S or U . Also, a DES instan
e is said

that is su

essful when it rea
hes the su

ess state in �gure 4, is aborted

when it gets into abort state and fails when it goes to fail state in the same

�gure. In terms of
omposition, when a DES is used, it stands for a DES or

for a
ompound DES, indistin
tly.

� Sequential Operator What is known as sequential
omposition,

and is represented by the symbol ';'. Let a and b be two DESs, then

the
ompound DES
=a;b is su
h that an instan
e of
,

i

, behaves

like an instan
e of a, a

i

, until this one �nishes, then behaves like an

instan
e of b, b

i

. When b

i

�nishes,

i

�nishes with the same state as

b

i

. If a

i

is aborted then

i

is also aborted.

� Conditional Operator What is known as
onditional
omposi-

tion, and is represented by the symbol ':'. Let a and b be two DESs,

then the
ompound DES
=a<v>:b(v) is su
h that an instan
e of
,

i

, behaves like an instan
e of a, a

i

, until this one �nishes su

essfully

omputing the output parameter v, then behaves like an instan
e of b,

b

i

, whi
h uses v as its input parameter. When b

i

�nishes,

i

�nishes

with the same state as b

i

. If a

i

�nishes unsu

essfully, i.e., it fails or

is aborted,

i

�nishes with the same state as a

i

.

� Con
urrent Operator What is known as parallel
omposition,

and is represented by the symbol 'j'. Let a and b be two DESs, then

the
ompound DES
=ajb is su
h that an instan
e of
,

i

, behaves

like an instan
e of a, a

i

, and an instan
e of b, b

i

running in parallel

{ or
on
urrently {, and the state of the
omposition is a state pair

whi
h
ombines the states of both instan
es { see [12℄ for details {,

i

�nishes with the same state as the last �nished instan
e, either a

i

or

b

i

.

� Disabling Operator What is known as disabling
omposition,

and is represented by the symbol '#'. Let a and b be two DESs,

then the
ompound DES
=a#b is su
h that an instan
e of
,

i

,

behaves like an instan
e of a, a

i

, and an instan
e of b, b

i

running in

parallel { or
on
urrently {, and its state is the state pair
onformed

by the states of both instan
es,

i

�nishes with the same state as the

�rst �nished instan
e, either a

i

or b

i

, the not yet �nished instan
e is

aborted.

Thus, a
omposition of DESs
an be established based on this four oper-

ators, so, for example, let a, b,
, d and e be �ve DESs, a
ompound DES f

3 THE CONCEPTUAL MODEL 15

an be de�ned as f = a<v> : ((b#
)(v) ; (dje)(v)), note that v must

be the input parameter for b,
, d and e.

3.2.2 The DES Exe
utor

On
e a
ompound DES has been de�ned as a
omposition of other DES

and/or
ompound DES instan
es, when it is instantiated, an instan
e of a

DES provided by the ar
hite
ture, theDES Exe
utor is in
harge of
ontrol

and monitoring the
omposition during exe
ution. Figure 14 shows how a

DES Exe
utor instan
e, exe, use the
ontrol and monitoring ports of DES

and
ompound DES instan
es, d

i

's, inside the
ompound DES. It disposes of

its

i

's output ports for
ontrolling ea
h DES or
ompound DES instan
es,

and its m

exe

input port for monitoring all of them. Additionally, its
ontrol

and monitoring ports,
 andm,
onstitute the
ontrol and monitoring ports

of the
ompound DES instan
e, therefore, it is also in
harge of tra
king

the state of the whole
omposition depending on how it has been de�ned in

terms of exe
ution operators. Any DES may have an input parameter and/or

and output parameter, so a
omposition may have one or both of them too,

thus, the DES Exe
utor will inherit an input and/or an output parameter

depending on how it has been de�ned in terms of exe
ution operators and

on whi
h DES and/or
ompound DES instan
es
onform the
omposition.

3.2.3 Inner Mapping and Outer Mapping

To de�ne a
ompound DES, besides of indi
ating whi
h DES and/or
om-

pound DES instan
es are involved, and how these instan
es are related

through the exe
ution operators, it is also ne
essary to spe
ify how
om-

ponent DES' ports are
onne
ted internally in the
ompound DES, port

mapping that will be referred to as the inner mapping, , and further-

more, what instan
es ports are visible to external DES or
ompound DES

instan
es, the outer mapping. That is shown in �gures 12 and 13, where

ontrol and monitoring ports are not shown.

Conne
tions among ports are not restri
ted in number, so an input port

an be
onne
ted to zero o more output ports, and an output port
an be

onne
ted to zero or more input ports. The only restri
tion is that the ones

involved in a
onne
tion should
arry the same type of port pa
kets, sour
e

ports should be output ports and destination ports should be input ports.

3.2.4 A Compound DES Example: the Avoidan
e Compound

DES

Now the obsta
les avoidan
e behavior for a mobile robot is synthesized

through the
omposition of DESs presented previously in se
tion 3.1.4 using

the
on
ept of
ompound DES.

3 THE CONCEPTUAL MODEL 16

d1 dn

exe
c1 cn

mexe
c c m m

c cm m

Figure 14: Control and monitoring port
onne
tions

in a
ompound DES. The DES Exe
utor instan
e,

exe,
ontrols and monitors the DES and
ompound

DES instan
es, d

i

's, inside a
ompound DES. It uses

itsm

exe

port to monitor all of them, and its

i

's ports

to
ontrol ea
h one. Its
ontrol and monitoring ports,

 andm,
onstitute the
ontrol and monitoring ports

of the
ompound DES instan
e. User de�ned input

and output ports are not displayed.

Figure 15 depi
ts the
ompound DES avoidan
e whi
h performs obsta-

les avoidan
e using instan
es of the di�erent DESs introdu
ed in se
tion

3.1.4: the sensory DESs { the sonarsensor, the visionsensor and the

lasersensor {, the obsta
les dete
tor DES { dete
t { and the obsta
les

avoidan
e DES { avoid {. Thus, this
ompound DES implements an ob-

sta
les avoidan
e behavior based on sensory information
oming from three

types of sensors.

On
e the
ompound DES avoidan
e and its di�erent
omponents have

been implemented and tested, it may be used alone or as a
omponent in

another
ompound DES/s. As an example, in �gure 16 is shown how avoid-

an
e might be utilized in an another
ompound DES, gotowithavoidan
e,

where it is
ombined with another DESs or
ompound DESs. The
ompound

DES gotowithavoidan
e is a behavior allowing a mobile robot to navigate

to a spe
i�
 pla
e performing obsta
les avoidan
e along a traje
tory. As was

said in se
tion 3.1.4 the ti
ks input port pa
kets for the sensors would be

generated by timers or sensor devi
e interruptions. It has been assumed in

gotowithavoidan
e that the DES servo a

esses dire
tly to motors sta-

tus, otherwise feedba
k between this DES and the DESmotors in �gure 16

3 THE CONCEPTUAL MODEL 17

sensor
laser

vision
sensor

sensor
sonar

detect

avoid

tick

tick

tick

lasertick visiontick sonartick

sense

sense

sense

sense
freespace

freespace

freespace

obstacles

obstacles

velocities

velocities

avoidance

Figure 15: The
ompound DES avoidan
e.

The DES Exe
utor instan
e, and the
ontrol and

monitoring ports are not shown.

should be ne
essary.

avoidance gotoservo

motors

freespace

velocities

freespace

avoidvels

velocities

gotovels

velocities

velocities

sonartick

visiontick

sonartick

visiontick

lasertick

lasertick

goal

goal

gotowithavoidance

Figure 16: The
ompound DES gotowithavoidan
e. An example of

using the
ompound DES avoidan
e.

4 THE SOFTWARE FRAMEWORK 18

4 The Software Framework

The
on
eptual model introdu
ed in previous se
tion 3, has been put into

pra
ti
e developing a software framework whi
h allows developers/users to

map DES and
ompound DES de�nitions to real implementations.

This software ar
hite
ture provides two levels of abstra
tion:

� A Compiler. The DES Compiler, des
, generates
ode,
onsist-

ing on Java sub
lasses de�ned in the
ontext of a hierar
hy of Java

lasses, the DESpkg, whi
h implements DESs,
ompound DESs and

asso
iated data types { port pa
kets and input and output parameters

{ based on spe
i�
 des
ription
ode for ea
h parti
ular roboti
 system

de�ned through a des
ription �le { a .des �le {.

� A Hierar
hy of Java Classes. The software model provides a hi-

erar
hy of Java
lasses, the DESpkg, where the
on
epts of DES and

ompound DES, their default behavior and asso
iated data have been

implemented. This hierar
hy of
lasses provides super
lasses to im-

plement simple DESs,
ompound DESs, port pa
kets and input and

output parameters, a

ording to de�nitions established in the pre
ed-

ing se
tion 3.

The des
ription
ode a

epted by the
ompiler des
 through .des �les

will be the higher level of abstra
tion, and the
lasses hierar
hy DESpkg

onstitutes the lower level. Thus, in short words, as a �rst step, the de-

velopers/users
reate a .des �le des
ribing DESs and
ompound DESs to

ontrol a spe
i�
 roboti
 system, then, apply the des

ompiler to obtain

a set of Java
lasses whi
h will embody these DESs and
ompound DESs

as sub
lasses inside the hierar
hy of
lasses, DESpkg, that implement the

default fun
tionality for all of them. Finally, the developers/users will have

to �nalize the implementation of su
h sub
lasses
ompleting with Java
ode

their non default fun
tionality.

Along the next se
tions, these two abstra
tion levels will be presented in

more detail using the same example, the obsta
les avoidan
e behavior for a

mobile robot, already introdu
ed.

4.1 The DES Compiler

The DES Compiler, des
, allows developers/users to de�ne the software

skeleton to
ontrol a roboti
 system. The
ompiler a

epts a des
ription

ode, a .des �le, to de�ne su
h a skeleton in terms of DESs and
ompound

DESs, then, generates a set of Java sub
lasses, immersed in a hierar
hy

of Java
lasses { the DESpkg {, mapping that des
ription
ode in Java

shell
lasses that, then, must be
ompleted by developers/users in order to

a
hieve an operative system.

4 THE SOFTWARE FRAMEWORK 19

4.1.1 The des
 Code

The des
ription
ode a

epted by the
ompiler, the des

ode, will be shown

next through the example already introdu
ed along se
tion 3, the obsta
les

avoidan
e behavior for a mobile robot.

As it was said in se
tion 3.1.4, all sensors involved in the obsta
les avoid-

an
e behavior share the same DES stru
ture that the generi
 sensor depi
ted

in �gures 5 and 6. Figure 17, shows the DES des
ription
ode for one of

the sensors, the belt of sonars. Figures 18 and 19 display the des

ode for

the other involved sensors, the laser range �nder and the
ameras on the

roboti
 head. Noti
e that the des

ode is the same for all of them, ex
ept

the DES name, whi
h is sonarsensor for the sonars belt, lasersensor for

the laser range �nder and visionsensor for the
ameras, due to they have

in
ommon the same DES stru
ture. Also observe how all of them use the

same type of port pa
ket on their di�erent ports, CTi
k on the input port

ti
k, and CMap on the output port sense.

des sonarsensor(none,none) /* no input parameter,

no output parameter */

{

input ports

{

ti
k:
ir
ular, CTi
k, 2;

};

output ports

{

sense: CMap;

};

entry state ina
tive

{

transition in ti
k;

};

state readandsend

{

transition in ti
k;

};

};

Figure 17: The des
 des
ription for the sonar sensor.

Figures 17, 18 and 19 show us how des

ode to de�ne a typi
al DES

looks like. The
ode des
ribes the DES, in terms of input and output ports,

and states. And for ea
h state, establishes whi
h input port is a
tivated

and when state transitions are possible. The framework implements input

ports in three ways: a
ir
ular bu�er of port pa
kets, a FIFO { a queue {

of port pa
kets, and a growing FIFO of port pa
kets. For ea
h input port,

its type, length and port pa
ket must be spe
i�ed. Noti
e that one of the

states should be the entry state, where the default automaton enters when

goes to running state, shown in �gure 4. Input and output parameters
an

4 THE SOFTWARE FRAMEWORK 20

des lasersensor(none,none) /* no input parameter,

no output parameter */

{

input ports

{

ti
k:
ir
ular, CTi
k, 2;

};

output ports

{

sense: CMap;

};

entry state ina
tive

{

transition in ti
k;

};

state readandsend

{

transition in ti
k;

};

};

Figure 18: The des
 des
ription for the laser sensor.

des visionsensor(none,none) /* no input parameter,

no output parameter */

{

input ports

{

ti
k:
ir
ular, CTi
k, 2;

};

output ports

{

sense: CMap;

};

entry state ina
tive

{

transition in ti
k;

};

state readandsend

{

transition in ti
k;

};

};

Figure 19: The des
 des
ription for the vision sensor.

also be indi
ated, if any, DESs shown in the mentioned �gures do not use

them. Comments may be added using C standard notation for
omments.

Observe that nothing related to the default automaton, its states and

transitions, or related to the
ontrol and monitoring ports,
 andm, appears

in the des
ription
ode. All this is transparently added by the
ompiler

to the Java sub
lasses whi
h will be generated. Nothing is also de
lared

4 THE SOFTWARE FRAMEWORK 21

about what happens inside ea
h state, that is, its inner fun
tionality, mainly,

when a state
hange happens { a state transition {, and when output port

pa
kets must be emitted through output ports. All this is part of the spe
i�

fun
tionality of ea
h DES, and must be
ompleted by the developer/user

after
ompilation in the Java sub
lasses generated by the
ompiler.

The des

ode for the DES dete
t
orresponding to �gures 7 and 8, is

shown in �gure 20. It does not have input and output parameters either.

Note that its input port sense a

epts the same type of port pa
ket, CMap,

whi
h is issued by the sensors { the sonarsensor, the lasersensor, and the

visionsensor { on their respe
tive sense output ports.

des dete
t(none,none) /* no input parameter,

no output parameter*/

{

input ports

{

sense:
ir
ular, CMap, 4;

freespa
e:
ir
ular, CFreeSpa
e, 2;

};

output ports

{

obsta
les: CObsta
les;

freespa
e: CFreeSpa
e;

};

entry state ina
tive

{

transition in sense;

};

state dete
t

{

transition in sense;

transition in freespa
e;

};

};

Figure 20: The des
 des
ription for the obsta
les dete
tor.

The avoid DES, �gures 9 and 10, has the des

ode displayed in �gure

21. As the dete
t DES, it does not have input and output parameters

either.

Figure 22 shows the des

ode for the avoidan
e
ompound DES, shown

in �gure 15. In this des
ription, DES and/or
ompound DES instan
es must

be spe
i�ed. Furthermore, the inner mapping { lo
al
ompound DES
on-

ne
tions among inputs and outputs ports { and the outer mapping { input

and output ports of the whole
omposition { may be indi
ated. Finally, the

ombination among DES instan
es should be expli
itly established. Con-

retely, a
on
urrent
omposition among the three types of sensors has been

spe
i�ed, and this
on
urrent
omposition is
ombined in a disabling way

with the dete
tor DES and the obsta
les avoidan
e DES, see se
tion 3.1.4.

4 THE SOFTWARE FRAMEWORK 22

des avoid(none,none) /* no input parameter,

no output parameter*/

{

input ports

{

obsta
les:
ir
ular, CObsta
les, 2;

};

output ports

{

velo
ities: CVelo
ities;

};

entry state ina
tive

{

transition in obsta
les;

};

state dete
t

{

transition in obsta
les;

};

};

Figure 21: The des
 des
ription for the avoid DES.

In this way, the avoidan
e behavior works in the worst
ase, when only one

of the sensors is operative, and in the best
ase when all of them are. If the

obsta
les dete
tor DES, or the avoid DES �nishes { either aborted, or with

su

ess, or unsu

essfully {, the behavior will be �nished too. Observe that

nothing related with
ontrol and monitoring ports, and the DES Exe
utor

is indi
ated in this
ode, be
ause it is part of the default behavior for ea
h

ompound DES, and as with DESs, it is also transparently added by the

ompiler to the Java sub
lasses that are generated.

4.1.2 Compiler Veri�
ations

During
ompilation the DES
ompiler des
 performs a set of veri�
ations

on the
ode, and when any of them is not ful�lled, the violation is noti-

�ed and the
ompilation is aborted. The following summary resumes these

veri�
ations.

On ea
h DES, it veri�es that:

� There is not a reuse of names for input and output ports and states,

i.e., if any input port, output port or state has been rede�ned.

� Referen
es to input ports are
orre
t in state statements, that is, if

there is any input port referen
e whi
h has not been de�ned.

� All DESs must have one and only one entry state.

� There is not an idle state, that is, a state without a
y
le and without

transitions. A
y
le in a state allows fun
tionality in this state when

4 THE SOFTWARE FRAMEWORK 23

ompound des avoidan
e

{

instan
es

{

sonarsensor sonarsensor1;

visionsensor visionsensor1;

lasersensor lasersensor1;

dete
t dete
t1;

avoid avoid1;

};

inner mapping

{

from sonarsensor1.sense to dete
t1.sense;

from visionsensor1.sense to dete
t1.sense;

from lasersensor1.sense to dete
t1.sense;

from dete
t1.freespa
e to dete
t1.freespa
e;

from dete
t1.obsta
les to avoid1.obsta
les;

};

outer mapping

{

input sonarti
k: sonarsensor1.ti
k;

input visionti
k: visionsensor1.ti
k;

input laserti
k: lasersensor1.ti
k;

output velo
ities: avoid1.velo
ities;

output freespa
e: dete
t1.freespa
e;

};

exe
ute as [(sonarsensor1 |

visionsensor1 |

lasersensor1) # dete
t1 # avoid1 ℄;

};

Figure 22: The des
 des
ription for the avoidan
e
ompound DES.

no input port pa
kets are re
eived. When a
y
le is de�ned in a state

the developer/user will have a
y
le fun
tion to �ll in for this state

in the Java
ode generated by the DES Compiler, more pre
isely, in

the Java
lass whi
h will embody the DES
ontaining this state. The

y
le feature is not shown in this do
ument.

On ea
h
ompound DES, it veri�es that:

� There is not a reuse of names for instan
es, and input and output

ports, that is, if any instan
e, or input port or output port has been

rede�ned.

� Instan
es de�nitions should be only referred to other de�ned DESs or

ompound DESs.

� There is no any kind of re
ursive de�nitions of instan
es, i.e., it is

not possible to de�ne a
ompound DES
ontaining an instan
e or

instan
es of itself, or
ontaining an instan
e or instan
es of
ompound

4 THE SOFTWARE FRAMEWORK 24

DESs in
luding, in turn, dire
t or indire
tly, an instan
e or instan
es

of this
ompound DESs.

� Referen
es in inner and outer mappings are
onsistent with instan
e

de�nitions spe
i�ed in the
ompound DES, i.e., if the referred in-

stan
es, input and output ports have been de�ned.

� Inner mapping
onne
tions are established among
ompatible input

and output ports , i.e., transporting the same type of port pa
kets.

� The exe
ute statement is referred to instan
es de�ned in the
ompound

DES, and ea
h instan
e should be in the exe
ute statement on
e and

only on
e.

� Output and input parameters mat
h among instan
es in
onditional

operators in the exe
ute statement.

Thus, on
e, a set of developed DESs and
ompound DESs is available,

new assemblages and
ombinations are easily veri�ed through
ompilation.

4.2 The Hierar
hy of Java Classes DESpkg: The Software

Ba
kbone

The Java
lasses hierar
hy DESpkg is really the software ba
kbone whi
h

implements the
on
epts established in se
tion 3. For ea
h roboti
 system

des
ribed through a .des �le, the des

ompiler generates Java sub
lasses

in the
ontext of this hierar
hy of
lasses, whi
h will
onstitute its software

skeleton, and will have to be
ompleted by the developer/user.

To illustrate how the developer/user should
omplete the Java
ode gen-

erated by the
ompiler, and, at the same time, to outline the DESpkg set

of
lasses, we will have a look to part of the
ode generated by the des

ompiler for the example whi
h has already been introdu
ed along previous

se
tions, the obsta
les avoidan
e behavior for a mobile robot,
on
retely, the

skeleton
lasses generated for DES dete
t and the
ompound DES avoid-

an
e.

4.2.1 The DES dete
t

For ea
h de�ned DES in a .des �le, the des

ompiler generates a Java
lass.

As a sample, appendix A shows the Java
lass generated by the
ompiler for

DES dete
t,
orresponding to the des

ode depi
ted in �gure 20.

First of all, having a look to the
ode, observe that, there are a lot of

pairs of marks as
omments, whi
h may have one out of these three forms:

� either //<->se
tion<->

and //<->/se
tion<->,

4 THE SOFTWARE FRAMEWORK 25

� or //<->se
tion<->state,port<->

and //<->/se
tion<->state,port<->,

� or //<->se
tion<->state<->

and //<->/se
tion<->state<->.

Ea
h pair of these marks delimits portions of
ode whi
h
ould be modi-

�ed by the
ompiler in future
ompilations, so there, the developer/user does

not have to add any
ode, otherwise it will be lost in the next
ompilation, if

any. On the
ontrary, all
ode added by the developer/user situated outside

of any of these pairs of marks will be preserved among des

ompilations.

Thus, if the des
ription
ode for a DES is modi�ed and
ompiled, the previ-

ous
ode already added by the developer is not missed, but preserved, if it

has been added outside of any of these pair of marks. In general, as it will be

seen later, the
ompiler adds these kinds of marks to all
ode that it
reates,

not only to the one
orresponding to DESs des
riptions, and, the rule is the

same,
ode to be preserved among
ompilations should be added outside of

these pairs of marks. Furthermore, all these marks should be preserved as

they have been generated by the
ompiler, be
ause any mark alone without

its partner will
ause a
ompilation error. The
ompiler does not prote
t

all it generates with these marks, it only prote
ts in this way things whi
h

might
hange among
ompilations. The
ompiler also generates
ode whi
h

remains invariant among
ompilations whi
h is not prote
ted with marks,

and whi
h is preserved along su

essive
ompilations, but only generated the

�rst time, so it should not be modi�ed by the developer/user, be
ause the

ompiler does not verify in
onse
utive
ompilations if this
ode has been

modi�ed or not. To
on
lude, as rules whi
h are a must for developers/users

when they are
ompleting any
lass generated by the
ompiler, the next two

rules must be observed:

� Any
ode generated by the
ompiler must stri
tly be preserved without

hanges, even any
omment, and spe
ially, the mentioned pairs of

marks.

� Any
ode added by developers/users must be situated outside of the

portions of
ode delimited by the pairs of marks generated by the

ompiler.

A

ording to des

ode, in �gure 20,
orresponding to DES dete
t, the

ompiler has generated the Java
lass CDESdete
t whi
h is a sub
lass of

theDESpkg
lass CDES; see appendix A, where CDESdete
t appears as

it was generated �rst. CDESdete
t
onstitutes the skeleton to implement

the DES dete
t.

In this framework, the fun
tionality of ea
h DES will be
oded on the

transitions among the automaton states, in
luding the transitions
orre-

sponding to the default automaton in �gure 4. The des

ode for a DES

4 THE SOFTWARE FRAMEWORK 26

only spe
i�es for ea
h one of its states what input ports
ould be listened

to, thus, meaning that, only a part of the infrastru
ture of the DES is
on-

stru
ted by the
ompiler, its skeleton, the rest must be
ompleted by the

developer/user. Spe
i�
ally, the
ompiler generates on ea
h state a fun
tion

to �ll in,
orresponding to ea
h input port that
an be listened to in that

state. Figure 23 displays a sample from the
ode generated for DES dete
t,

appendix A, showing the fun
tion whi
h should be
ompleted for its state

ina
tive
orresponding to an input port pa
ket on its input port sense.

In the �gure the fun
tion has already been �lled in. Noti
e how the

transition to state dete
t must be spe
i�ed expli
itly. Obviously, the added

ode has been in
luded outside the marks whi
h de�ne the body of the

fun
tion generated by the
ompiler, as it was said in previous paragraphs,

just to preserve the
ode from future des

ode modi�
ations.

Figures 24 and 25 show the fun
tions
reated by the
ompiler for the state

dete
t with ea
h one of the input ports a
tivated in this state a

ording to

des

ode in �gure 20. In these �gures and �gure 23, the fun
tions used to

send an output port pa
ket through an output port and to transit to other

state are implemented on the DES super
lassCDES, but other several fun
-

tions, also used in the
ode appearing in the �gures, are supposed to be im-

plemented in some other pla
e by the developer/user. For example, the fun
-

tion memberPro
essMap(CMap ppCMap, CObsta
les ppObsta
les)

whi
h performs obje
t dete
tion from sensory data
ontained on the port

pa
ket ppCMap and returns the result already pa
ked on CObsta
les,

whi
h is a port pa
ket that may be sent dire
tly through the output port

obsta
les. There are no restri
tions to implement data and fun
tion mem-

bers in the skeleton
lass to
omplete the expe
ted fun
tionality for a spe
i�

DES, obviously, always that,
ompiler marks are preserved. Observe that

in terms of Java, these skeleton
lasses are also Java
lasses, so, may be

linked without any restri
tions with whatever other Java
ode, for example,

a driver for a sensor, a math library, et
.

Fun
tions
orresponding to transitions among default automaton states

are already implemented in the super
lass CDES, but they are imple-

mented as idle fun
tions { they do nothing {. These fun
tions
an be over-

ridden in the sub
lass, if ne
essary. To illustrate this extend, the member

fun
tion Started() displayed in �gure 26 has been overridden in
lass CDES-

dete
t. Parti
ularly, this fun
tion is
alled when the automaton gets into

the entry state of the automaton on
e a running port pa
ket {

r

{ has

been re
eived and the transition to the entry state have been
ompleted, see

�gure 4. This fun
tion was intended as the typi
al pla
e to write
ode to

allo
ate the ne
essary resour
es to exe
ute
onveniently the user automaton,

and a fail in this allo
ation will provoke a transition to the fail state of the

default automaton as shown in the �gure, otherwise the automaton remains

in the entry state
ontinuing exe
ution. In any
ase, keep in mind that the

de
ision to override a default automaton transition, whi
h typi
ally has an

4 THE SOFTWARE FRAMEWORK 27

//<->begintransition<->ina
tive,sense<->

// Funtion pointer definition for transition sense in state ina
tive.

private stati

lass Cina
tivesense implements IFun
tionPointer

{

publi
 void Fun
tion(Obje
t oParam)

{

CDESdete
t thisCDESdete
t=(CDESdete
t) oParam;

CMap ppCMap=(CMap) thisCDESdete
t._ppCurrentPa
ket;

// State ina
tive: here starts your
ode

//<->/begintransition<->ina
tive,sense<->

// BEGIN: Added
ode

// get output port pa
ket CObsta
les

CObsta
les ppObsta
les=thisCDESdete
t._obOutputBox.GetPortPa
ket(iOP_obsta
les);

// pro
ess sensory data

Pro
essMap(ppCMap,ppObsta
les);

if(ppObsta
les.IsAnyObsta
le()) // Is there any obsta
le?

{

// send out CObsta
les output port pa
ket

thisCDESdete
t._obOutputBox.SendPortPa
ket(iOP_obsta
les);

}

else // No obsta
les

{

// send a CFreeSpa
e output port pa
ket

thisCDESdete
t._obOutputBox.SendPortPa
ket(iOP_freespa
e);

}

// transit to dete
t state

thisCDESdete
t._SetState(iS_dete
t);

// END: Added
ode

//<->endtransition<->ina
tive,sense<->

// State ina
tive: here ends your
ode

}

}

//<->/endtransition<->ina
tive,sense<->

Figure 23: State ina
tive with a port pa
ket on its input port sense.

idle default implementation, is up to the developer/user depending on the

expe
ted automaton fun
tionality, and all its
orresponding
ode must be

expli
itly added by him/her to the
lasses generated by the
ompiler.

Figure 26 also shows how internal events have been implemented. There,

the internal event fail is just the boolean return value of fun
tion Allo
ateRe-

sour
es(). If it were implemented literally { see se
tion 3.1{, the automaton

would have to have an extra input port, an extra output port, and an extra

type of port pa
ket de�nition, and besides, ea
h time the event o

urs, the

automaton should emit a port pa
ket to signal the event o

urren
e to itself.

Skeleton
lasses for port pa
kets are also
reated by the
ompiler, ap-

pendi
es C.1, C.2 and C.3, respe
tively, show the
lasses generated for port

pa
kets CMap, CFreeSpa
e and CObsta
les, whi
h are used in DES de-

4 THE SOFTWARE FRAMEWORK 28

//<->begintransition<->dete
t,sense<->

// Funtion pointer definition for transition sense in state dete
t.

private stati

lass Cdete
tsense implements IFun
tionPointer

{

publi
 void Fun
tion(Obje
t oParam)

{

CDESdete
t thisCDESdete
t=(CDESdete
t) oParam;

CMap ppCMap=(CMap) thisCDESdete
t._ppCurrentPa
ket;

// State dete
t: here starts your
ode

//<->/begintransition<->dete
t,sense<->

// BEGIN: Added
ode

// get output port pa
ket CObsta
les

CObsta
les ppObsta
les=thisCDESdete
t._obOutputBox.GetPortPa
ket(iOP_obsta
les);

// pro
ess sensory data

Pro
essMap(ppCMap,ppObsta
les);

if(ppObsta
les.IsAnyObsta
le()) // Is there any obsta
le?

{

// send out the obsta
les port pa
ket

thisCDESdete
t._obOutputBox.SendPortPa
ket(iOP_obsta
les);

}

else // No obsta
les

{

// send a CFreeSpa
e port pa
ket

thisCDESdete
t._obOutputBox.SendPortPa
ket(iOP_freespa
e);

}

// END: Added
ode

//<->endtransition<->dete
t,sense<->

// State dete
t: here ends your
ode

}

}

//<->/endtransition<->dete
t,sense<->

Figure 24: State dete
t with a port pa
ket on its input port sense.

te
t, as they were
reated �rst by the
ompiler, and note how all of them

are sub
lasses of the DESpkg
lass CPortPa
ket. They must implement,

at least, a
opy method, as these appendi
es show. But besides,
ould also

implement its own fun
tionality { data and fun
tion members {, as the fun
-

tion member IsAnyObsta
le() for port pa
ket CObsta
les whi
h is
alled

on fun
tions displayed in �gures 23 and 24.

In short, using this software framework, the stru
ture for an automa-

ton de�ning a simple DES must be
ompleted at this level of �lling-in the

skeleton, be
ause it is only at this level where primitives to perform states

transitions, to make de
isions based on the port pa
kets, to send output

port pa
kets and to
ode internal events, are available.

Additionally the
ompiler will
reate skeleton
lasses too, for input and

output parameters, if any. All input and output parameters, as other skele-

ton
lasses already introdu
ed, are also sub
lasses of another
lass, ISel-

4 THE SOFTWARE FRAMEWORK 29

//<->begintransition<->dete
t,freespa
e<->

// Funtion pointer definition for transition freespa
e in state dete
t.

private stati

lass Cdete
tfreespa
e implements IFun
tionPointer

{

publi
 void Fun
tion(Obje
t oParam)

{

CDESdete
t thisCDESdete
t=(CDESdete
t) oParam;

CFreeSpa
e ppCFreeSpa
e=(CFreeSpa
e) thisCDESdete
t._ppCurrentPa
ket;

// State dete
t: here starts your
ode

//<->/begintransition<->dete
t,freespa
e<->

// BEGIN: Added
ode

// transit to ina
tive state

thisCDESdete
t._SetState(iS_ina
tive);

// END: Added
ode

//<->endtransition<->dete
t,freespa
e<->

// State dete
t: here ends your
ode

}

}

//<->/endtransition<->dete
t,freespa
e<->

Figure 25: State dete
t with a port pa
ket on its input port freespa
e.

prote
ted void _Started()

{

if(!Allo
ateResour
es()) // Is there anything wrong?

{

// Transit to fail state in the default automaton

_SetFailState();

}

}

Figure 26: CDES
lass overridden fun
tion.

fRepli
ation, whi
h is a Java interfa
e provided by DESpkg. Note that

this feature has not been used in the example shown in this do
ument.

4.2.2 The Compound DES avoidan
e

Appendix B shows the Java
lass CCoDESavoidan
e generated �rst by

the
ompiler
orresponding to the
ompound DES avoidan
e, �gure 15,

from its des
ription
ode in �gure 22. DESpkg implements
ompound

DESs through derivation of
lass CCompoundDES, as it
an be seen in

appendix B. Classes generated by the
ompiler
orresponding to
ompound

DESs are not skeleton
lasses, they do not have to be �lled in, they
an be

used dire
tly as they have been
reated �rst by the
ompiler, but, in any
ase,

the
ompiler also interleaves pairs of marks indi
ating where developer/user

ode
an not be added, although, these
lasses usually do not need to be

ompleted.

5 CONCLUSIONS 30

5 Con
lusions

With respe
t to the goals expressed in se
tion 2, a software ar
hite
ture has

been devised and built, whi
h establishes a formal de�nition for a software

omponent for roboti
 systems, and a formal de�nition for
ombinations of

these software
omponents in a way that eases its reusability and deploy-

ment.

The software framework was put into pra
ti
e and tested through non

real examples, and during evaluation various limitations and ideas arose that

were not though initially, and are
ommented next.

5.1 Current Limitations and Future Work

Future work is very related to
urrent limitations, and the following points

express some of these limitations and, at the same time, possible trends to

follow in future improvements.

� Automata Mapping. The
urrent ar
hite
ture maps port automata

into implementations using two levels of abstra
tion: the des

om-

piler and the hierar
hy of Java
lasses DESpkg. The automaton
an

only be
ompleted at the last level, DESpkg, be
ause primitives to

perform state transitions, to make de
isions based on the port pa
k-

ets, and to implement internal events are only available at this level.

Complete automata mapping at �rst level, the
ompiler, might be pos-

sible if su
h primitives were also available at
ompiler level. Automata

mapping at
ompiler level
ould allow verifying automaton stability,

automaton isolated states, et
, at
ompilation.

� Software Deployment. Normally to
omplete the skeleton of a DES,

it is ne
essary to link the skeleton
lass generated by the
ompiler with

some other library or libraries provided by the developer/user, this in-

formation is not present anywhere in the ar
hite
ture at this moment.

Software deployment would only be possible if the software ar
hite
-

ture disposed of su
h a information, for example, adding information

about linking and libraries in the des
ription
ode for ea
h DES, for

ea
h port pa
ket, for ea
h input and output parameter, and even, for

ea
h,
ompound DES.

� A Combination Language. On
e a set of DESs and
ompound

DESs has been developed and tested enough, and
an be used to
on-

stru
t a
omplex roboti
 system, the fa
t of having a quite stati
 and

rigid way of
ombining DESs and
ompound DESs arises. It looks

ne
essary to devise a more dynami
 and
omplex way { a
ombina-

tion language { to
ombine DESs and
ompound DESs whi
h makes

possible to program a roboti
 system in terms of
omponents, that is,

6 ACKNOWLEDGEMENTS 31

in terms of DESs and
ompound DESs, and su
h a language needs to

keep the formality of pro
ess algebra, be
ause in this way it is possi-

ble to argue that su
h
ombinations are also port automata. Besides,

just to enumerate, several points might deserve future
onsiderations

in this language:

{ fail re
overing: there should be me
hanisms for fail dete
tion

and re
overing. At this moment there is no me
hanism for fail

re
overing, a fail implies a transition to fail state, and then it is

possible to restart exe
ution or just kill the automaton, see �gure

4.

{ timing information: information about worst working periods

for a DES , its priorities, its working laten
ies, wat
h-dog timers,

et
, and means to module su
h information dynami
ally.

� Porting to C++. The
urrent ar
hite
ture implementation in Java

lasses is quite slow for low level
omponents. Porting it to C++

makes sense as we want to apply it on real roboti
 systems.

� Distributed Framework. At this moment the ar
hite
ture is not

distributed. Roboti
 systems usually involve multiple
omputers, fu-

ture versions should be distributed

� Tools. Di�erent tools
ould be quite usable and valuable, for exam-

ple, graphi
al tools as a graphi
al DES designer and a graphi
al DES

omposer, debugging tools as a DES debugger, et
.

6 A
knowledgements

This work was performed during a seven-month stay of one of the authors,

Mr. Antonio C. Dom��nguez-Brito, at the Centre for Autonomous Systems,

Royal Institute of Te
hnology, Sto
kholm, Sweden, from O
tober 1999 to

April 2000. The authors would like to thank the institutions whi
h made

this stay possible: the Margit and Folke Perhzon Foundation, the

Centre for Autonomous Systems and the University of Las Palmas

de Gran Canaria, be
ause without their support this work would never

have been performed.

Referen
es

[1℄ M. Andersson, A. Oreb�a
k, M. Lindstr�om, and H. I. Christensen. ISR:

an Intelligent Servi
e Robot. Le
ture Notes in Arti�
ial Intelligen
e,

Heidelberg, Springer Verlag, 1999. Intelligent Sensor Based Roboti
s,

h. To appear.

REFERENCES 32

[2℄ R. C. Arkin. Integrating Behavioral, Per
eptual and World Knowledge

in Rea
tive Navigation. Roboti
s and Autonomous Systems, 6:105{122,

1990.

[3℄ R. C. Arkin and T. Bal
h. AuRA: Prin
iples and Pra
ti
e in Review.

College of Computing, Georgia Institute of Te
hnology, Mobile Robot

Laboratory, Atlanta, Georgia 30332, 1997. Report.

[4℄ R. J. Firby. Task Networks for Controlling Continuous Pro
esses. Se
-

ond International Conferen
e on AI Planning Systems, pp. 49-54, 1994.

[5℄ E. Gat. Integrating Planning and Rea
ting in a Heterogeneous Asyn-

hronous Ar
hite
ture for Controlling Real-World Mobile Robots. Pro-

eedings of the IAAA Conferen
e, 1992.

[6℄ K. Konolige, K. Myers, A. SaÆotti, and E. Ruspini. The Saphira Ar-

hite
ture: a Design for Autonomy. Journal of Experimental and The-

oreti
al Arti�
ial Intelligen
e, 9:215{235, 1997.

[7℄ S. Fleury, M. Herrb, and R. Chatila. G

en

oM: a Tool for the Spe
i�
ation

and the Implementation of Operating Modules in a Distributed Robot

Ar
hite
ture. IROS 97, Grenoble, Fran
e. LAAS Report 97244, 1997.

[8℄ P. J. Ramadge and W. M. Wonham. The Control of Dis
rete Event

Systems. Pro
eedings of the IEEE, 77(1):81{97, 1989.

[9℄ M. Steenstrup, M. A. Arbib, and E. G. Manes. Port Automata and

the Algebra of Con
urrent Pro
esses. Journal of Computer and System

S
ien
es, 27:29{50, 1983.

[10℄ D. M. Lyons and M. A. Arbib. A Formal Model of Computation for

Sensory-Based Roboti
s. IEEE Transa
tions on Roboti
s and Automa-

tion, 5(3):280{293, June 1989.

[11℄ D. M. Lyons. A Pro
ess-Based Approa
h to Task Representation. IEEE

Pro
eedings Roboti
s and Automation, pages 2142{2147, 1990.

[12℄ J. Ko�se
k�a. Supervisory Control Theory of Autonomous Mobile Agents.

PhD thesis, University of Pennsylvania, GRASP Laboratory, February

1996.

[13℄ J. Ko�se
k�a, H. I. Christensen, and R. Baj
sy. Experiments in Behavior

Composition. Roboti
s and Autonomous Systems, 19:287{298, Mar
h

1997.

[14℄ D. B. Stewart. Real-Time Software Design and Analysis of Re
on-

�gurable Multi-Sensor Based Systems. PhD thesis, Carnegie Mellon

University, Dept. Ele
tri
al and Computing Engineering, Pittsburgh,

1994.

A THE DES DETECT: THE CDESDETECT CLASS 33

[15℄ D. B. Stewart, R. A. Volpe, and P. K. Khosla. Design of Dynami
ally

Re
on�gurable Real-Time Software Using Port-Based Obje
ts. IEEE

Transa
tions on Software Engineering, 23(12):759{776, De
ember 1997.

[16℄ D.B. Stewart and P. Khosla. Chimera 3.1: the Real-Time Operating

System for Re
on�gurable Sensor-Based Control Systems. Advan
ed

Manipulators Laboratory, The Roboti
s Institute and Department of

Ele
tri
al and Computer Engineering, Carnegie Mellon University, Jan-

uary 1993.

[17℄ D.B. Stewart and P. Khosla. The Chimera Methodology: Designing

Dynami
ally Re
on�gurable and Reusable Real-Time Software using

Port-Based Obje
ts. International Journal of Software Engineering and

Knowledge Engineering, 6(2):249{277, June 1996.

A The DES dete
t: the CDESdete
t
lass

//<->header<->

/*

* File: CDESdete
t.java

* Compiled by: DES Compiler v0.1 (des
)

* Date: Tue 16 May 2000 13:35:53

*/

//<->/header<->

pa
kage DESpkg;

//<->definition<->

publi

lass CDESdete
t extends CDES {

private stati
 CInstan
esNaming _inanaming=new CInstan
esNaming("CDESdete
t");

//<->/definition<->

//<->inputportsids<->

// User defined input ports

publi
 stati
 final int iIP_sense=1;

publi
 stati
 final int iIP_freespa
e=2;

//<->/inputportsids<->

//<->inputports
onfigs<->

// Input ports
onfiguration data

publi
 stati
 final CInputBox.CInputPortConfiguration[℄ aip
IP_PORTS=

{

// iIP_CONTROL

ip
IP_CONTROL,

// iIP_sense

new CInputBox.CInputPortConfiguration("DESpkg.CCir
ularPort",

"DESpkg.CMap",

4),

// iIP_freespa
e

new CInputBox.CInputPortConfiguration("DESpkg.CCir
ularPort",

"DESpkg.CFreeSpa
e",

2)

};

//<->/inputports
onfigs<->

//<->outputportsids<->

A THE DES DETECT: THE CDESDETECT CLASS 34

// User defined output ports

publi
 stati
 final int iOP_obsta
les=1;

publi
 stati
 final int iOP_freespa
e=2;

//<->/outputportsids<->

//<->outputports
onfigs<->

// Output ports
onfiguration data

publi
 stati
 final String[℄ asOP_PORTS=

{

sOP_MONITORING, // iOP_MONITORING

"DESpkg.CObsta
les", // iOP_obsta
les

"DESpkg.CFreeSpa
e" // iOP_freespa
e

};

//<->/outputports
onfigs<->

//<->statesids<->

// User defined states Ids

publi
 stati
 final int iS_ina
tive=5;

publi
 stati
 final int iS_dete
t=6;

//<->/statesids<->

//<->statesnames<->

// States names

private stati
 final String[℄ _asstateNames=

{

asStateNames[iS_IDLE℄,

asStateNames[iS_RUNNING℄,

asStateNames[iS_SUCCESS℄,

asStateNames[iS_ABORT℄,

asStateNames[iS_FAIL℄,

"ina
tive",

"dete
t"

};

//<->/statesnames<->

//<->statesmasks<->

// States masks

private stati
 final boolean[℄[℄ _aabostateMasks=

{

// iS_IDLE

{

true, // iIP_CONTROL

false, // iIP_sense

false // iIP_freespa
e

},

// iS_RUNNING (not ne
essary, but it must be a position for this state)

{

true, // iIP_CONTROL

false, // iIP_sense

false // iIP_freespa
e

},

// iS_SUCCESS

{

true, // iIP_CONTROL

false, // iIP_sense

false // iIP_freespa
e

},

// iS_ABORT

{

true, // iIP_CONTROL

false, // iIP_sense

false // iIP_freespa
e

A THE DES DETECT: THE CDESDETECT CLASS 35

},

// iS_FAIL

{

true, // iIP_CONTROL

false, // iIP_sense

false // iIP_freespa
e

},

// iS_ina
tive

{

true, // iIP_CONTROL

true, // iIP_sense

false // iIP_freespa
e

},

// iS_dete
t

{

true, // iIP_CONTROL

true, // iIP_sense

true // iIP_freespa
e

}

};

//<->/statesmasks<->

//<->statestransitionsdefs<->

//<->begintransition<->ina
tive,sense<->

// Funtion pointer definition for transition sense in state ina
tive.

private stati

lass Cina
tivesense implements IFun
tionPointer

{

publi
 void Fun
tion(Obje
t oParam)

{

CDESdete
t thisCDESdete
t=(CDESdete
t) oParam;

CMap ppCMap=(CMap) thisCDESdete
t._ppCurrentPa
ket;

// State ina
tive: here starts your
ode

//<->/begintransition<->ina
tive,sense<->

//<->endtransition<->ina
tive,sense<->

// State ina
tive: here ends your
ode

}

}

//<->/endtransition<->ina
tive,sense<->

//<->begintransition<->dete
t,sense<->

// Funtion pointer definition for transition sense in state dete
t.

private stati

lass Cdete
tsense implements IFun
tionPointer

{

publi
 void Fun
tion(Obje
t oParam)

{

CDESdete
t thisCDESdete
t=(CDESdete
t) oParam;

CMap ppCMap=(CMap) thisCDESdete
t._ppCurrentPa
ket;

// State dete
t: here starts your
ode

//<->/begintransition<->dete
t,sense<->

//<->endtransition<->dete
t,sense<->

// State dete
t: here ends your
ode

}

}

//<->/endtransition<->dete
t,sense<->

//<->begintransition<->dete
t,freespa
e<->

// Funtion pointer definition for transition freespa
e in state dete
t.

private stati

lass Cdete
tfreespa
e implements IFun
tionPointer

{

publi
 void Fun
tion(Obje
t oParam)

A THE DES DETECT: THE CDESDETECT CLASS 36

{

CDESdete
t thisCDESdete
t=(CDESdete
t) oParam;

CFreeSpa
e ppCFreeSpa
e=(CFreeSpa
e) thisCDESdete
t._ppCurrentPa
ket;

// State dete
t: here starts your
ode

//<->/begintransition<->dete
t,freespa
e<->

//<->endtransition<->dete
t,freespa
e<->

// State dete
t: here ends your
ode

}

}

//<->/endtransition<->dete
t,freespa
e<->

//<->/statestransitionsdefs<->

//<->statestransitionsmatrix<->

// Matrix of transitions (fun
tion pointers) for ea
h state

private final IFun
tionPointer[℄[℄ _aafpstateCallba
ks=

{

// iS_IDLE

{

new CDES.CIdleControlPa
ket(), // iIP_CONTROL

null, // iIP_sense

null // iIP_freespa
e

},

// iS_RUNNING (not ne
essary, but it must be a position for this state

{

new CDES.CEntryControlPa
ket(), // iIP_CONTROL

null, // iIP_sense

null // iIP_freespa
e

},

// iS_SUCCESS

{

new CDES.CSu

essAbortFailControlPa
ket(), // iIP_CONTROL

null, // iIP_sense

null // iIP_freespa
e

},

// iS_ABORT

{

new CDES.CSu

essAbortFailControlPa
ket(), // iIP_CONTROL

null, // iIP_sense

null // iIP_freespa
e

},

// iS_FAIL

{

new CDES.CSu

essAbortFailControlPa
ket(), // iIP_CONTROL

null, // iIP_sense

null // iIP_freespa
e

},

// iS_ina
tive

{

new CDES.CEntryControlPa
ket(), // iIP_CONTROL

new Cina
tivesense(), // iIP_sense

null // iIP_freespa
e

},

// iS_dete
t

{

new CDES.CEntryControlPa
ket(), // iIP_CONTROL

new Cdete
tsense(), // iIP_sense

new Cdete
tfreespa
e() // iIP_freespa
e

}

};

//<->/statestransitionsmatrix<->

A THE DES DETECT: THE CDESDETECT CLASS 37

//<->states
y
lesdefs<->

// None

//<->/states
y
lesdefs<->

//<->states
y
lesve
tor<->

// Nothing (no
y
les)

//<->/states
y
lesve
tor<->

// BEGIN: Lo
al variable spa
e (advisable a private modifier for them)

// END: Lo
al variable spa
e

//<->
onstru
tor<->

publi
 CDESdete
t()

//<->/
onstru
tor<->

{

_sInstan
eName=_inanaming.NewName();

_sName=_sInstan
eName;

_ibInputBox=new CInputBox(aip
IP_PORTS);

_obOutputBox=new COutputBox(asOP_PORTS);

//<->entrystate<->

_iEntryState=iS_ina
tive;

//<->/entrystate<->

}

publi
 boolean IsInvalid() { return false; }

publi
 String GetStateName(int iState)

{

if(iState==iS_DEAD) return "Dead";

if((iState<0) || (iState>=_asstateNames.length)) return null;

return _asstateNames[iState℄;

}

publi
 COutputBox.CInputPortRef GetInputPortRef(int iInputPort)

{

if((iInputPort<0) || (iInputPort>=aip
IP_PORTS.length)) return null;

return new COutputBox.CInputPortRef(_ibInputBox,iInputPort);

}

publi
 Obje
t Conne
t(int iPort, COutputBox.CInputPortRef iprInputPortRef)

throws CPortPa
ketMismat
hEx
eption

{ return _obOutputBox.Conne
t(iPort,iprInputPortRef); }

publi
 boolean Dis
onne
t(int iPort,Obje
t oInputDes
riptor)

{ return _obOutputBox.Dis
onne
t(iPort,oInputDes
riptor); }

publi
 void Dis
onne
tAll() { _obOutputBox.Dis
onne
tAll(); }

publi
 void run()

{

if(IsInvalid()) return;

_Laun
hed();

_SetState(iS_IDLE);

_ppCurrentPa
ket=null;

_iCurrentInputPort=-1;

B THE COMPOUND DES AVOIDANCE 38

while(_iCurrentState!=iS_DEAD)

{

//<->runningkernel<->

_waitAndTransition();

//<->/runningkernel<->

// NOTE: Just release the
pu (ne
essary with green threads)

try { Thread.sleep(0); } // Release the
pu (Green threads)

at
h(InterruptedEx
eption ieEx
eption) { /* Nothing */ }

}

}

private void _waitAndTransition()

{

try

{

_iCurrentInputPort=_ibInputBox.WaitForSomething();

_ppCurrentPa
ket=_ibInputBox.GetPortPa
ket(_iCurrentInputPort);

if(_aafpstateCallba
ks[_iCurrentState℄[_iCurrentInputPort℄!=null)

_aafpstateCallba
ks[_iCurrentState℄[_iCurrentInputPort℄.Fun
tion(this);

}

at
h(InterruptedEx
eption ieEx
eption) { _SetDeadState(); }

}

prote
ted boolean[℄ _GetStateMask(int iState) { return _aabostateMasks[iState℄; }

//<->inputparam<->

//No input param

//<->/inputparam<->

}

B The Compound DES avoidan
e

//<->header<->

/*

* File: CCoDESavoidan
e.java

* Compiled by: DES Compiler v0.1 (des
)

* Date: Tue 16 May 2000 13:35:53

*/

//<->/header<->

pa
kage DESpkg;

//<->definition<->

publi

lass CCoDESavoidan
e extends CCompoundDES {

private stati
 CInstan
esNaming _inanaming=new CInstan
esNaming("CCoDESavoidan
e");

//<->/definition<->

//<->instan
esids<->

// Ids for DES instan
es

publi
 stati
 final int iINSTANCES=5;

publi
 stati
 final int iINS_sonarsensor1=0;

publi
 stati
 final int iINS_visionsensor1=1;

publi
 stati
 final int iINS_lasersensor1=2;

publi
 stati
 final int iINS_dete
t1=3;

publi
 stati
 final int iINS_avoid1=4;

//<->/instan
esids<->

//<->innermappinglength<->

B THE COMPOUND DES AVOIDANCE 39

// Inner mapping

publi
 stati
 final int iINNER_MAPPING_REFS=5;

//<->/innermappinglength<->

//<->inputportsids<->

// Outer mapping: input ports

publi
 stati
 final int iINPUT_PORTS=3;

publi
 stati
 final int iIP_sonarti
k=1;

publi
 stati
 final int iIP_visionti
k=2;

publi
 stati
 final int iIP_laserti
k=3;

//<->/inputportsids<->

//<->outputportsids<->

// Outer mapping: output ports

publi
 stati
 final int iOUTPUT_PORTS=2;

publi
 stati
 final int iOP_velo
ities=1;

publi
 stati
 final int iOP_freespa
e=2;

//<->/outputportsids<->

//<->
onstru
tor<->

publi
 CCoDESavoidan
e()

//<->/
onstru
tor<->

{

_sInstan
eName=_inanaming.NewName();

//<->instan
es
reation<->

//DES instan
es
reation

_adesInstan
es=new CDES[iINSTANCES℄;

_adesInstan
es[iINS_sonarsensor1℄=new CDESsonarsensor();

_adesInstan
es[iINS_visionsensor1℄=new CDESvisionsensor();

_adesInstan
es[iINS_lasersensor1℄=new CDESlasersensor();

_adesInstan
es[iINS_dete
t1℄=new CDESdete
t();

_adesInstan
es[iINS_avoid1℄=new CDESavoid();

//<->/instan
es
reation<->

//<->innermapping
reation<->

// Inner mapping
reation

_amrSour
ePorts=new CMappingRef[iINNER_MAPPING_REFS℄;

_amrDestinationPorts=new CMappingRef[iINNER_MAPPING_REFS℄;

_amrSour
ePorts[0℄=new CMappingRef(iINS_sonarsensor1,CDESsonarsensor.iOP_sense);

_amrDestinationPorts[0℄=new CMappingRef(iINS_dete
t1,CDESdete
t.iIP_sense);

_amrSour
ePorts[1℄=new CMappingRef(iINS_visionsensor1,CDESvisionsensor.iOP_sense);

_amrDestinationPorts[1℄=new CMappingRef(iINS_dete
t1,CDESdete
t.iIP_sense);

_amrSour
ePorts[2℄=new CMappingRef(iINS_lasersensor1,CDESlasersensor.iOP_sense);

_amrDestinationPorts[2℄=new CMappingRef(iINS_dete
t1,CDESdete
t.iIP_sense);

_amrSour
ePorts[3℄=new CMappingRef(iINS_dete
t1,CDESdete
t.iOP_freespa
e);

_amrDestinationPorts[3℄=new CMappingRef(iINS_dete
t1,CDESdete
t.iIP_freespa
e);

_amrSour
ePorts[4℄=new CMappingRef(iINS_dete
t1,CDESdete
t.iOP_obsta
les);

_amrDestinationPorts[4℄=new CMappingRef(iINS_avoid1,CDESavoid.iIP_obsta
les);

//<->/innermapping
reation<->

//<->inputports
reation<->

// Outer mapping
reation: input ports

_amrInputPorts=new CMappingRef[iINPUT_PORTS℄;

_amrInputPorts[iIP_sonarti
k-1℄=

new CMappingRef(iINS_sonarsensor1,CDESsonarsensor.iIP_ti
k);

_amrInputPorts[iIP_visionti
k-1℄=

new CMappingRef(iINS_visionsensor1,CDESvisionsensor.iIP_ti
k);

_amrInputPorts[iIP_laserti
k-1℄=

new CMappingRef(iINS_lasersensor1,CDESlasersensor.iIP_ti
k);

//<->/inputports
reation<->

C THE PORT PACKETS 40

//<->outputports
reation<->

// Outer mapping
reation: output ports

_amrOutputPorts=new CMappingRef[iOUTPUT_PORTS℄;

_amrOutputPorts[iOP_velo
ities-1℄=new CMappingRef(iINS_avoid1,CDESavoid.iOP_velo
ities);

_amrOutputPorts[iOP_freespa
e-1℄=new CMappingRef(iINS_dete
t1,CDESdete
t.iOP_freespa
e);

//<->/outputports
reation<->

//<->exe
utiontree
reation<->

// Exe
ution tree
reation

CExeTree.CNode nTree0=CExeTree.CreateLeafNode(iINS_sonarsensor1);

CExeTree.CNode nTree1=CExeTree.CreateLeafNode(iINS_visionsensor1);

CExeTree.CNode nTree2=CExeTree.CreateOpNode(CExeTree.iCONCURRENT,nTree0,nTree1);

CExeTree.CNode nTree3=CExeTree.CreateLeafNode(iINS_lasersensor1);

CExeTree.CNode nTree4=CExeTree.CreateOpNode(CExeTree.iCONCURRENT,nTree2,nTree3);

CExeTree.CNode nTree5=CExeTree.CreateLeafNode(iINS_dete
t1);

CExeTree.CNode nTree6=CExeTree.CreateOpNode(CExeTree.iDISABLING,nTree4,nTree5);

CExeTree.CNode nTree7=CExeTree.CreateLeafNode(iINS_avoid1);

CExeTree.CNode nTree8=CExeTree.CreateOpNode(CExeTree.iDISABLING,nTree6,nTree7);

_nExeTree=nTree8;

//<->/exe
utiontree
reation<->

}

}

C The Port Pa
kets

C.1 The CMap
lass

//<->header<->

/*

* File: CMap.java

* Compiled by: DES Compiler v0.1 (des
)

* Date: Tue 16 May 2000 13:35:53

*/

//<->/header<->

pa
kage DESpkg;

//<->definition<->

publi

lass CMap extends CPortPa
ket

//<->/definition<->

{

// The Copy method is mandatory, you must implement it. The rest it is up to you.

publi
 boolean Copy(CPortPa
ket ppPa
ket)

{

if(ppPa
ket==null) return false;

//<->fun
tion
ast<->

CMap ppCMap=(CMap) ppPa
ket;

//<->/fun
tion
ast<->

// Your
opy
ode starts here

// Your
opy
ode ends here

return true;

}

}

C THE PORT PACKETS 41

C.2 The CFreeSpa
e
lass

//<->header<->

/*

* File: CFreeSpa
e.java

* Compiled by: DES Compiler v0.1 (des
)

* Date: Tue 16 May 2000 13:35:53

*/

//<->/header<->

pa
kage DESpkg;

//<->definition<->

publi

lass CFreeSpa
e extends CPortPa
ket

//<->/definition<->

{

// The Copy method is mandatory, you must implement it. The rest it is up to you.

publi
 boolean Copy(CPortPa
ket ppPa
ket)

{

if(ppPa
ket==null) return false;

//<->fun
tion
ast<->

CFreeSpa
e ppCFreeSpa
e=(CFreeSpa
e) ppPa
ket;

//<->/fun
tion
ast<->

// Your
opy
ode starts here

// Your
opy
ode ends here

return true;

}

}

C.3 The CObsta
les
lass

//<->header<->

/*

* File: CObsta
les.java

* Compiled by: DES Compiler v0.1 (des
)

* Date: Tue 16 May 2000 13:35:53

*/

//<->/header<->

pa
kage DESpkg;

//<->definition<->

publi

lass CObsta
les extends CPortPa
ket

//<->/definition<->

{

// The Copy method is mandatory, you must implement it. The rest it is up to you.

publi
 boolean Copy(CPortPa
ket ppPa
ket)

{

if(ppPa
ket==null) return false;

//<->fun
tion
ast<->

CObsta
les ppCObsta
les=(CObsta
les) ppPa
ket;

//<->/fun
tion
ast<->

// Your
opy
ode starts here

// Your
opy
ode ends here

return true;

}

C THE PORT PACKETS 42

}

