A Software Architecture for Programming
Robotic Systems based on the Discrete
Event System Paradigm

Antonio C. Dominguez-Brito'* Magnus Andersson®!
and Henrik I. Christensen®!

CVAP244, Tech. Rep. ISRN KTH/NA/P-00/13-SE
Centre for Autonomous Systems, KTH (Royal Institute of Technology)
S-100 44 Stockholm, Sweden, September 2000

!University of Las Palmas de Gran Canaria, Spain
2Centre for Autonomous Systems, KTH, Sweden

Abstract

Transfer and reuse of software designed specifically to control robotic
systems is difficult, and often apparently impossible due to the diver-
sity of hardware and software typically involved. Software reuse is not
only a problem of robotic systems. In other fields, as business soft-
ware, ”de facto” standard tools to define software components can be
found, and a supplier component software industry even exists. On the
contrary in the robotic field there are not any established standards to
address this problem. The present work has been addressed to estab-
lish grounds to conceive what could be a feasible concept of software
component for robotics systems.

Software for control robotic systems may be very heterogeneous,
involving numerous devices and software, but, from a generic point
of view, it can be considered as a network of weakly coupled parallel
and/or concurrent active entities — processes or threads — interacting
asynchronously among them in some way. In this document is pre-
sented a software model which identifies these active entities with soft-
ware components and defines their interaction, modeling such entities
as port automata, and their interaction through a small set of opera-
tors taken from process algebra. This software framework is presented
along with a prototypical example, an obstacle avoidance behavior for
a mobile robot, illustrating that transfer and reuse of code is possible
using this software architecture.

acdbrito@dis.ulpgc.es
sungam@nada.kth.se

*
+
+
*hic@nada.kth.se

1 INTRODUCTION 2

1 Introduction

Transfer and reuse of software designed specifically to control robotic sys-
tems is difficult, and often apparently impossible due to the diversity of hard-
ware and software typically involved. Development from scratch is not an
uncommon situation in many systems, even at the same laboratory. Other
times an important software integration effort must be done to reutilize
software.

Software reuse is not only a problem of robotic systems. In other fields, as
business software, ”de facto” standard tools to define software components
can be found, — e.g., ActiveX from Microsoft — and a supplier component
software industry even exists. On the contrary in the robotic field there are
not any established standards to address this problem.

During last years a boosting of hardware features along with a decrease
of prices has created a big demand for day-to-day robotics applications,
and has evidenced the lack of standard tools to facilitate the design and
implementation of robotics systems, and also to define software components
for robotic systems.

A software component should be something like an electronic component
or chip in electronic industry. It is many years that off-the-shelf chips can
be bought and deployed in other parts of the world. Each component has
a clear functionality and a well established external interface. Furthermore,
numerous standard tools exist to design electronic devices based on the
composition, assembly and combination of these electronic components. A
similar panorama would be desirable for the robotic industry.

The present work has been addressed to establish grounds to conceive
what could be a feasible concept of software component for robotics systems,
and once ideas were conceived, to try to put them into practice.

Previous work has been carried out on software architectures being able
to grasp the inherent features of robotic systems, and in turn, to map sys-
tems designs into working implementations. A large research effort has been
devoted to hybrid architectures for autonomous mobile robots — for exam-
ple, ISR [1], AuRA [2] [3], RAP [4], ATLANTIS [5], Saphira [6], and
G°"oM [7] —, which have usually three layers: the bottom layer or reac-
tive layer, the intermediate layer or task control layer and the top layer or
deliberative layer. The reactive layer is the closest to the hardware, so it
deals directly with sensors and actuators, and tries to embody system be-
haviors. Typically, the behaviors correspond to software modules or a sort
of combination of them. The second layer is a sequencer of behaviors in the
lower layer. The task execution layer is in charge of initiating, combining,
and monitoring behaviors to achieve tasks defined in terms of reactive layer
behaviors. Last layer, the deliberative one, is usually responsible for long-
term deliberative planning, where plans are defined in terms of task carried
out by the second layer.

1 INTRODUCTION 3

The mentioned hybrid architectures concern with layers interaction, be-
haviors integration, sequencers and planners. The present work must be
considered in this context, since it has been motivated by one of these ar-
chitectures — ISR [1] —, but it is intended to look for a concept of a generic
software component for robotic systems, giving robotic developers the ca-
pacity to design and implement systems through combination, assembly and
composition of them, and at the same time, being able to grasp the inher-
ent particularities of robotic software, that is, ability to deal with different
hardware and software. Such components would just be another level of
abstraction between design and implementation, in developer hands, to im-
plement robotic systems.

Typically, robotic systems software can be seen as a network of parallel
and/or concurrent active entities, processes or threads, interacting asyn-
chronously among them in some way. A software model which identifies
these active entities with software components, and defines their interac-
tion, is presented in this document. In this model, these active entities are
weakly coupled, so the global system behavior is the result of the interaction
among the entities, and also of the local behavior of these ones, therefore,
once the functionality of each particular entity has been defined, the global
control scheme resides on how these entities interact on each specific system,
and thus, on the configuration of its network of parallel and/or concurrent
active entities. The concept to model these active entities has been taken
from the Discrete Event Systems — DES — framework [8]. Each entity is
embodied as a thread, and modeled as a Port Automaton [9] [10] [11]. In
this framework, these entities has been called simple DESs or just DESs, and
their combination and interaction defines the behavior of the whole system.
A small set of operators taken from process algebra [12] [13], has been used
to formalize compositions of DESs, such assemblages define what has been
called compound DESs, and can be used as DESs in other assemblages or
combinations.

Another port automata based software architecture has been developed
at CMU [14] [15]. Tt was mainly addressed to achieve reconfigurability
and software reutilization for real time systems, concretely, a reconfigurable
robotic arm. It defines a software component, the port object, relies on ser-
vices of a specific real time operating system, Chimera [16] [17], for software
assembly, and was designed for a particular hardware set: real time process-
ing units and VME buses. The work presented in this paper pursuits has
also defined a software component based on port automata theory, but there
are no assumptions about a specific operating system with a particular set
of services relying on a especial hardware set. The only assumption is that
the operating system must support multithreading.

Next section, section 2, exposes briefly the motivations and goals. Sec-
tion 3 provides the formal and theoretical grounds which conform the con-
ceptual model of the software architecture, and at the same time, introduces

2 MOTIVATIONS AND GOALS 4

a prototypical example which will be used along the rest of the document.
Section 4 illustrates the software architecture itself through its use with
the example previously introduced. Finally, on section 5, conclusions are
exposed, and current software framework limitations and probable future
trends are indicated.

2 Motivations and Goals

Reutilization and deployment of software for robotics systems should be as
easy as buying electronic components to make your own electronic designs.
A similar panorama can be found in business computing, where a software
components industry is rising.

The former paragraph resumes the motivations and goals of the work
presented here, and as starting goals to understand the insights of the prob-
lem, the following objectives were established:

e Formalizing and devising a concept of software component, specific
to robotic systems, which should be reusable and deployable, defining
deployable as software which can be transferred and statically added to
any project, meaning that the software can be transferred to another
system at linking time without having to add new ”glue” code [14] to
interface the component to the rest of the system, obtaining the same
functionality that was achieved when it was created and tested first.

e Formalizing and devising combinations or assemblages of these soft-
ware components being possible that such combinations can be reuti-
lized, deployed and combined in the same manner that simple compo-
nents can be.

Thus, the aim is to design a software architecture which is able to embody
in implementations the concepts expressed in the former two points, and also
able to test such ideas in real robotic systems.

3 The Conceptual Model

As it was mentioned earlier in section 1, the introduction, the software typ-
ically involved in the control of robotic systems may be very heterogeneous,
involving numerous hardware devices and software. Such a heterogeneity
could be abstracted through a model of interaction among the different ele-
ments composing the system, thus, from this point of view, a robotic system
might be considered as a network of weakly coupled parallel and/or con-
current active entities — processes or threads — interacting asynchronously
among them in some way. This interaction among entities and the local
behavior of each one define tasks to achieve by each specific robotic system.

3 THE CONCEPTUAL MODEL o

This concept of active entity has been identified as the software component
to be modeled.

To formalize this weakly coupled parallel/concurrent active entity, as a
software component, the concept of port Automaton [9] has been used. Fur-
thermore, to achieve tasks it is necessary to combine automata conforming
an automata network. The concept of port automaton establishes a clear
external interface, its ports, for external interaction among port automata,
but, it is also needed a formal framework to express how these automata
relate each other in run time. A small set of operators has been taken from
process algebra [12] [13] to define a composition of port automata. These
operators allow us to assert that the composition is also a port automaton,
as its components.

Two key concepts have been devised to map port automata and their
combinations to real software implementations: the concept of a simple DES
— Discrete Event System — or DES which models a port automaton, and
what will be defined as a Compound DES, which formalizes a composition
of DESs and/or another Compound DESs.

These two key concepts will be presented in next subsections, and at
the same time, to illustrate how this model can be used in a real system,
an example will be presented. Concretely, the example will show how an
obstacles avoidance behavior for a mobile robot might be implemented using
this conceptual framework.

3.1 DESs

A Simple DES defines a parallel or concurrent active entity — a process
or a thread — as a Port Automaton [9], i.e., a Finite State Automaton —
FSA — that uses ports for all external communication. This FSA executes
asynchronously transiting among states as a result of its own activity or
upon reception of events/signals through its input ports.

Thus the port automaton concept establishes a clear distinction between
the internal functionality of an active entity — its FSA — and its external
interface — its ports —.

From [9] and [13], a port automaton P can be formally defined as a
generator G = (L,Q,1,6,3,X,Y, F), where:

e [is the set of ports.

e () is the set of states.

7 C @ is the set of initial states.

X ={X; :i € L}, where X, is the input set for port i.

Y ={Y; :i € L}, where Y; is the output set for port i.

3 THE CONCEPTUAL MODEL 6

e J:Q X Ujer, X; — @ is the transition map, where
Uier Xi = {(z,7) : © € X;} is the disjoint union of the X;’s.

o 3 ={p;:i€ L}, where §; : Q — Y; is the output map for port i.

e F C (Q is the set of final states.

All subject to the axiom that for each ¢ € Q : {x € X; : 0(q, (z,7)) #
0} = 0 or X; assuring that, in any state ¢ € @, for any port i, either all
elements of the input set X; will be capable of being accepted or none of
them will.

In our framework, L = L; U L, such that L; N L, = (), where L; is
the set of input ports, and L, is the set of output ports. A port packet
is defined as an information unit which can be received through an input
port, and/or issued through an output port. So, elements of sets X;’s and
Y;’s, corresponding to each input and output port respectively, will be all
possible port packets received or issued through such ports. Port packets
are also classified in types of ports packets, and only one type of port packet
can be associated with each input or output port.

Figure 1 depicts a port automaton, a DES, from an external point of
view, where the port automaton is represented by a circle, input ports by
arrows oriented towards the circle, and output port by arrows oriented out-
wards. This figure depicts how the internals of a port automaton are isolated
from outside by using the mechanism of ports. Figure 2 shows the internal
view of a generic DES, the circles are the states of the automaton and the
arrows, transitions among its states based on port packets received through
its input ports. In the figure p;; denotes that a port packet j of type i
has been received through an input port. The figure does not illustrate the
automaton functionality, only displays its states and transitions.

LY L, 8e
) EL
/ \ ? @ﬁ"'

0) <
m

Figure 1: The external Figure 2: The internal generic view
view of a DES (the circle): of a DES: states (circles) and transi-
tions (oriented arrows) provoked by
port packets. Double circles mean fi-
nal states.

n

input and output ports
(the oriented arrows).

3 THE CONCEPTUAL MODEL 7

3.1.1 Default Ports, Default States and the Default Automaton

The model establishes two default ports and six default states for all DES.
The default ports are: the control port, ¢, and the monitoring port m. The
default states are: idle, running, abort, success, fail and dead.

Figure 3 depicts the default ports. The control port ¢ is an input port
used to force a state in a DES. The states which can only be forced exter-
nally are running, abort and dead. Control packets are the kind of port
packets received in this port. The monitoring port m is an output port
used by each DES to indicate its internal state changes. Each time a state
change happens in a DES a monitoring port packet, indicating this change,
is emitted through this port. Therefore, which these two ports, control and
monitoring of each DES is possible.

C m

N

il\ /'01
in/ \ok

Figure 3: The default ports. The
control port ¢ and the monitoring
port m.

In our framework each DES is a thread and is modeled through the
same automaton structure, the Default Automaton, as shown in figure
4. The idle state is the starting state. There, the thread corresponding
the DES has been launched and resources has been allocated for it, but is
suspended waiting on its control port. The running state, in dashes in the
figure, represents the not yet defined part of the automaton which is really
in charge of giving functionality to each DES — later referred to as the user
automaton —. This state just depicts the states and transitions that should
be established by the developer/user. To go into running state a running
control packet, ¢,, must force the state change. When a DES in running
state is interrupted or aborted, the DES makes a transition to the abort
state. An abort control packet, ¢, can only force this change. A DES which
finishes successfully its work, goes to success state, the transition to this
state must be done by the DES itself. A fail state is reached when the DES
fails its task, and as with the success state, the change must only be an
own initiative of the DES itself. The two former states can not be forced
using the control port. From idle, abort, success and fail states the DES
is suspended waiting on its control port keeping thread resources. From

3 THE CONCEPTUAL MODEL 8

these states, a running control packet makes the DES get into running
state, and a dead control packet, cg4, brings it to dead state which means
resources release and self destruction, and is the unique final state.

How it was established at the beginning of section 3.1, in our model
of discrete event systems, events are modeled as port packets, so internal
events, i.e. transitions originated by the DES itself, are also modeled by port
packets, except that, in this case, the involved input and output ports are
only used for internal communications. In particular, each modeled internal
event will have associated an input port and an output port, thus, when the
DES itself provokes the internal event, it sends out its corresponding port
packet through its associated output port and will receive the same port
packet through the associated input port, completing, in such a way, a tran-
sition. Examples of these kind of events are the transitions to success and
fail states in figure 4. The ports associated with port packets corresponding
to internal events are not shown in automaton figures along this document,
but it is assumed that all internal events are modeled like this.

Thus, a DES is a generator G, where by default ¢ € L;, m € L,,
{idle, running, success, abort, fail, dead} C @, 7 = {idle}, {c;,ca,ca}
C X, is the input set for ¢, internal port packets success and fail are
also included in X, the monitoring port packets are included in Y, and
are the output set for m, dgefquir C 0 is defined according to figure 4, and
F = {dead}. The default automaton defines two new sets of states:

e S = {success} C @, is the set of functional successful states, which
means that the automaton has finished its task successfully.

e U = {abort, fail} C @, is the set of functional unsuccessful states,
which means that the automaton has ended up its task with unsuc-
cessful results.

In [13] the sets S and U are the sets Fs and Fy, respectively, such that
F = F, UF, where F;, N F,, = (). In this framework, SN U =), but S and
U are not included in F', because according to figure 4, the automaton does
not finish when it reaches the states included in both sets, and it can be
brought to running state again for a new task execution.

3.1.2 Input and Output Ports, States and Transitions

Non default input and output ports, i;’s and 0;’s respectively in figure 3,
are user defined, including all its types of port packets. Non default states
and transitions among them are also user defined. Formally, for each DES,
the following sets are user defined:

e L; —{c,success;, fail;} = {i;}, i € {1,...,n} is the set of non default
input ports.

3 THE CONCEPTUAL MODEL 9

Cq
Cr
Ca

/ \ Cr C
: _running; “ [dead
success ™y

fail
? C
Cd
SUCCess

Figure 4: The Default Automaton.

\/‘

Cq
Cy
c

‘v

e L, — {m,success,, fail,} = {o;}, i € {1,...,k} is the set of non
default output ports.

e (X —{cy,Ca,ccq,success, fail}) U (Y — { monitoring port packets }) is
the set of non default port packets.

e () — {idle,running, success, abort, fail, dead} is the set of non de-
fault states.

® 0 —0defquit 18 the transition map based on non default input ports, and
not established in figure 4.

e and [, the output map.

where success; and success,, and fail; and fail, are, respectively, the
corresponding input and output ports for modeling internal events success
and fail.

3.1.3 Input and Output Parameters

A running port packet, c¢,, can transport an input parameter. Input
parameters are user defined data, and can be used to configure or initialize
each DES at the beginning of each task execution. When a DES reaches
its successful state, success, it sends a monitoring port packet through its
port m, which can transport an output parameter. As input parameters,
output parameters are also user defined data for each DES, and can be used
as input parameters for other/s DES/s.

3 THE CONCEPTUAL MODEL 10

3.1.4 DES Examples: the Sensors, an Obstacles Detector and
the Avoid DES

Several DESs have been devised to show how to implement an obstacle
avoidance behavior for a mobile robot using this framework. This example
involves three types of sensors: a belt of sonars, a laser range finder and a
stereo robotic head, corresponding each one of them with a DES. Besides,
there are another two additional DESs: an obstacle detector and a generator
of avoidance trajectories, the avoid DES. All of them will be presented next.
The sensors will be modeled sharing the same DES structure, the generic
sensor. Figure 5 shows the DES automaton for the generic sensor, the fig-
ure only displays user defined states and transitions based on user defined
input ports. Notice that what is shown in the figure would be the running
state in figure 4, the default automaton, which is hosting the DES, that is,
the automaton in the figure must be consider into the context of the default
automaton. The running pseudo state in the default automaton consti-
tutes or represents the part of the automaton which must be completed by
the user, which is a sensor in figure 5, and will be referred to as the user
automaton. That means that from every state in the user automaton a
transition to abort state in the default automaton is possible, just receiving
an abort control packet, ¢,, and also, from all of them it is possible to tran-
sit to states success and fail, although in such cases it must be explicitly
specified by the user. Additionally, the starting state in the user automaton
is the entry state where the default automaton gets into when a running
port packet, ¢, is received. All following figures illustrating user automata
for several DESs will not show these transitions to default automata states,
except when transitions to success and fail occur, due to these last ones
must be specified for each DES, the other ones are assumed by default.
Returning to the generic sensor in figures 5 and 6, there is only a user
defined input port, tick, which could be a clock tick or an interruption com-
ing from a hardware device which is the sensor. The automaton only has
two user defined states: inactive and readandsend. The inactive state
is the entry state. Normally resource allocation is localized in the entry
state, so a fail during allocation usually provokes a transition to default au-
tomaton state fail. Once resource allocation is completed successfully, the
automaton just wait for a port packet through its input port tick to transit
to readandsend. In the readandsend state the automaton collects infor-
mation from the associated sensor device, then, this information is packed
in port packets and sent out through its output port sense. During this
sensory data collection might happen a fail on the sensor which would cause
a transition to the fail state in the default automaton. This DES never
goes to the default automaton state success because it has a continuous
operation without a specific goal, it only has to process sensory data, hence,
to finish it, it must be aborted using an abort control packet c,. Figure 6

3 THE CONCEPTUAL MODEL 11

displays the external view of the DES sensor which embodies the generic

sensor.
l tick

Q
tick read and S
— = red a sensor
i fail i fail

tofail state to fail state Figure 6: The
Figure 5: The DES automaton generic DES sensor
for the generic sensor. The de- which implements
fault automaton and the control the generic sensor.
port are not shown. Control and moni-
toring ports are not

shown.

All sensors involved in the avoidance behavior share the same DES struc-
ture that the generic sensor depicted in figures 5 and 6, and they are: the
DES sonarsensor modeling the belt of sonars, the DES lasersensor mod-
eling the laser range finder, and the DES visionsensor modeling the stereo
robotic head cameras.

Figure 7 shows the DES automaton for an obstacles detector based on
information which comes from sensors modeled as the generic sensor pre-
sented in previous paragraphs. The inactive state is homologous to the
state with the same name in figure 5. It is also an entry state, and resource
allocation is carried out when the automaton enters into this state first,
s0, a transition to default automaton state fail is possible. Once resource
allocation has been done the state inactive is a doing-nothing state, just
waiting for sensory information. The automaton also goes into this state
when free space is detected, which is indicated by port packets on its in-
put port freespace. When sensory information gets into through the input
port sense, the automaton enters into its detect state, where obstacles are
detected based on sensory information, issuing obstacle detections through
its output port obstacles. If nothing is detected, a freespace port packet is
issued through its output port freespace, which is normally connected to
its synonymous input port freespace. This DES is also an automaton in
continuous operation, so, it does not have any transition to the default au-
tomaton state success. Figure 8 shows an external view of the DES detect
which embodies the mentioned automaton, only user defined input and out-
put ports are shown. Notice that to combine this DES with sensors modeled
like the generic sensor, is necessary that its input port sense transports
the same type of port packet that the one emitted by these sensors through

3 THE CONCEPTUAL MODEL 12

their output port sense, see figure 6, which also implies that all sensors
should produce the same kind of port packet on this port.

l freespace

tofail state
fail T conse sense detect

VRN e freespace

sense
— detect
> obstaclj
freespace

Figure 7: The DES automaton for
an obstacle detector. The default
automaton and the control port
are not shown.

Figure 8: The generic DES
detect which implements an
obstacle detector. Control
and monitoring ports are not
shown.

Figure 9 shows the DES automaton for obstacle avoidance. It has two
states, the inactive state which is the entry state, analogous to the state
with the same name in figure 5. It also can get into the default automaton
state fail, if resource allocation fails. Once a successful resource allocation
is carried out the automaton waits for detected obstacles port packets, just
to get into its second state, the avoid state, where avoidance velocities for
the mobile robot motors are computed based on obstacle detections received
through its input port obstacles, determining an obstacle avoidance trajec-
tory for the robot. Then, these velocities are packed and sent out through
its output port velocities. As previous DESs, the sensor DESs and the ob-
stacle detector, this DES is also a continuous operation automaton without
any transition to the default automaton state success. Figure 10 depicts
the DES avoid only showing user defined input and output ports.

3.2 Compound DESs

Once a set of DESs have been defined, instances of these ones may be utilized
to conform a network of port automata. A Compound DES, is a composition
of instances of DESs and/or another compound DESs. Figure 12 explains
graphically this concept, where the compound DES c is a composition of two
DES instances, one of DES a, a;, and one of DES b, b;, which are shown
in figure 11. Figure 13, depicts a compound DES d made of an instance of
compound DES ¢, ¢;, and an instance of DES b, evidencing that instances
of compound DESs are functionally equivalents to simple DESs in terms
of composition and instantiation, so a compound DES is a port automaton

3 THE CONCEPTUAL MODEL 13

l obstacles
O -
obstacles velocities

Figure 10: The DES
avoid which imple-
ments the obstacle
avoidance automaton.
Control and moni-
toring ports are not

tofail state

fail T
obstacles
—_— e

Figure 9: The DES automaton for ob-
stacle avoidance. The default au-
tomaton and the control port are not
shown.

shown.

which is a composition of port automata. Control and monitoring ports are
not shown.

Figure 11: Two DES: a

and b. Figure 12: The compound
DES c¢: a composition of a
and b.

Figure 13: The compound
DES d: a composition of ¢
and b.

3.2.1 Execution Operators

A small set of operators has been taken from process algebra [12] [13] to
define a compound DES as a composition of DESs and/or compound DESs

3 THE CONCEPTUAL MODEL 14

instances, these operators allow us to assert that the compound DES is
also an automaton, as its components, and have been called execution
operators. In the following definitions, when it is said that a DES instance
finishes, it is in terms of task finalization, that is, the DES instance has
reached a state included in the sets S or U. Also, a DES instance is said
that is successful when it reaches the success state in figure 4, is aborted
when it gets into abort state and fails when it goes to fail state in the same
figure. In terms of composition, when a DES is used, it stands for a DES or
for a compound DES, indistinctly.

e Sequential Operator What is known as sequential composition,
and is represented by the symbol ’;’. Let a and b be two DESs, then
the compound DES c¢=a;b is such that an instance of ¢, c¢;, behaves
like an instance of a, a;, until this one finishes, then behaves like an
instance of b, b;. When b; finishes, ¢; finishes with the same state as
b;. If a; is aborted then ¢; is also aborted.

e Conditional Operator What is known as conditional composi-
tion, and is represented by the symbol ’:’. Let a and b be two DESs,
then the compound DES c¢=a<v>:b(v) is such that an instance of ¢,
c;, behaves like an instance of a, a;, until this one finishes successfully
computing the output parameter v, then behaves like an instance of b,
b;, which uses v as its input parameter. When b; finishes, c; finishes
with the same state as b;. If a; finishes unsuccessfully, i.e., it fails or
is aborted, c; finishes with the same state as a;.

e Concurrent Operator What is known as parallel composition,
and is represented by the symbol ’|’. Let a and b be two DESs, then
the compound DES c=a|b is such that an instance of ¢, ¢;, behaves
like an instance of a, a;, and an instance of b, b; running in parallel
— or concurrently —, and the state of the composition is a state pair
which combines the states of both instances — see [12] for details —, ¢;
finishes with the same state as the last finished instance, either a; or
b;.

e Disabling Operator What is known as disabling composition,
and is represented by the symbol '#’. Let a and b be two DESs,
then the compound DES c=a#Db is such that an instance of ¢, c;,
behaves like an instance of a, a;, and an instance of b, b; running in
parallel — or concurrently —, and its state is the state pair conformed
by the states of both instances, ¢; finishes with the same state as the
first finished instance, either a; or b;, the not yet finished instance is
aborted.

Thus, a composition of DESs can be established based on this four oper-
ators, so, for example, let a, b, ¢, d and e be five DESs, a compound DES f

3 THE CONCEPTUAL MODEL 15

can be defined as f = a<v>: ((b#c)(v) ; (d|e)(v)), note that v must
be the input parameter for b, ¢, d and e.

3.2.2 The DES Executor

Once a compound DES has been defined as a composition of other DES
and/or compound DES instances, when it is instantiated, an instance of a
DES provided by the architecture, the DES Executor is in charge of control
and monitoring the composition during execution. Figure 14 shows how a
DES Executor instance, exe, use the control and monitoring ports of DES
and compound DES instances, d;’s, inside the compound DES. It disposes of
its ¢;’s output ports for controlling each DES or compound DES instances,
and its mgg, input port for monitoring all of them. Additionally, its control
and monitoring ports, ¢ and m, constitute the control and monitoring ports
of the compound DES instance, therefore, it is also in charge of tracking
the state of the whole composition depending on how it has been defined in
terms of execution operators. Any DES may have an input parameter and /or
and output parameter, so a composition may have one or both of them too,
thus, the DES Executor will inherit an input and/or an output parameter
depending on how it has been defined in terms of execution operators and
on which DES and/or compound DES instances conform the composition.

3.2.3 Inner Mapping and Outer Mapping

To define a compound DES, besides of indicating which DES and/or com-
pound DES instances are involved, and how these instances are related
through the execution operators, it is also necessary to specify how com-
ponent DES’ ports are connected internally in the compound DES, port
mapping that will be referred to as the inner mapping, , and further-
more, what instances ports are visible to external DES or compound DES
instances, the outer mapping. That is shown in figures 12 and 13, where
control and monitoring ports are not shown.

Connections among ports are not restricted in number, so an input port
can be connected to zero o more output ports, and an output port can be
connected to zero or more input ports. The only restriction is that the ones
involved in a connection should carry the same type of port packets, source
ports should be output ports and destination ports should be input ports.

3.2.4 A Compound DES Example: the Avoidance Compound
DES

Now the obstacles avoidance behavior for a mobile robot is synthesized
through the composition of DESs presented previously in section 3.1.4 using
the concept of compound DES.

3 THE CONCEPTUAL MODEL 16

Figure 14: Control and monitoring port connections
in a compound DES. The DES Executor instance,
exe, controls and monitors the DES and compound
DES instances, d;’s, inside a compound DES. It uses
its mz port to monitor all of them, and its ¢;’s ports
to control each one. Its control and monitoring ports,
c and m, constitute the control and monitoring ports
of the compound DES instance. User defined input
and output ports are not displayed.

Figure 15 depicts the compound DES avoidance which performs obsta-
cles avoidance using instances of the different DESs introduced in section
3.1.4: the sensory DESs — the sonarsensor, the visionsensor and the
lasersensor —, the obstacles detector DES — detect — and the obstacles
avoidance DES — avoid —. Thus, this compound DES implements an ob-
stacles avoidance behavior based on sensory information coming from three
types of sensors.

Once the compound DES avoidance and its different components have
been implemented and tested, it may be used alone or as a component in
another compound DES/s. As an example, in figure 16 is shown how avoid-
ance might be utilized in an another compound DES, gotowithavoidance,
where it is combined with another DESs or compound DESs. The compound
DES gotowithavoidance is a behavior allowing a mobile robot to navigate
to a specific place performing obstacles avoidance along a trajectory. As was
said in section 3.1.4 the ticks input port packets for the sensors would be
generated by timers or sensor device interruptions. It has been assumed in
gotowithavoidance that the DES servo accesses directly to motors sta-
tus, otherwise feedback between this DES and the DES motors in figure 16

3 THE CONCEPTUAL MODEL

lasertick vision

avoidance

velocities

veloci

Figure 15: The compound DES avoidance.
The DES Executor instance, and the control and
monitoring ports are not shown.

should be necessary.

sonartick

veloci V\
avoidvel.

avoidance servo
freespace’

visiontick

visiontick

velociti

velocities

lasertick

Figure 16: The compound DES gotowithavoidance.

using the compound DES avoidance.

tick

tick

ties

gotovels

es

sonartick

freespace

gotowithavoidance

17

An example of

4 THE SOFTWARE FRAMEWORK 18

4 The Software Framework

The conceptual model introduced in previous section 3, has been put into
practice developing a software framework which allows developers/users to
map DES and compound DES definitions to real implementations.

This software architecture provides two levels of abstraction:

e A Compiler. The DES Compiler, desc, generates code, consist-
ing on Java subclasses defined in the context of a hierarchy of Java
classes, the DESpkg, which implements DESs, compound DESs and
associated data types — port packets and input and output parameters
— based on specific description code for each particular robotic system
defined through a description file — a .des file —.

e A Hierarchy of Java Classes. The software model provides a hi-
erarchy of Java classes, the DESpkg, where the concepts of DES and
compound DES, their default behavior and associated data have been
implemented. This hierarchy of classes provides super classes to im-
plement simple DESs, compound DESs, port packets and input and
output parameters, according to definitions established in the preced-
ing section 3.

The description code accepted by the compiler desc through .des files
will be the higher level of abstraction, and the classes hierarchy DESpkg
constitutes the lower level. Thus, in short words, as a first step, the de-
velopers/users create a .des file describing DESs and compound DESs to
control a specific robotic system, then, apply the desc compiler to obtain
a set of Java classes which will embody these DESs and compound DESs
as subclasses inside the hierarchy of classes, DESpkg, that implement the
default functionality for all of them. Finally, the developers/users will have
to finalize the implementation of such subclasses completing with Java code
their non default functionality.

Along the next sections, these two abstraction levels will be presented in
more detail using the same example, the obstacles avoidance behavior for a
mobile robot, already introduced.

4.1 The DES Compiler

The DES Compiler, desc, allows developers/users to define the software
skeleton to control a robotic system. The compiler accepts a description
code, a .des file, to define such a skeleton in terms of DESs and compound
DESs, then, generates a set of Java subclasses, immersed in a hierarchy
of Java classes — the DESpkg —, mapping that description code in Java
shell classes that, then, must be completed by developers/users in order to
achieve an operative system.

4 THE SOFTWARE FRAMEWORK 19

4.1.1 The desc Code

The description code accepted by the compiler, the desc code, will be shown
next through the example already introduced along section 3, the obstacles
avoidance behavior for a mobile robot.

As it was said in section 3.1.4, all sensors involved in the obstacles avoid-
ance behavior share the same DES structure that the generic sensor depicted
in figures 5 and 6. Figure 17, shows the DES description code for one of
the sensors, the belt of sonars. Figures 18 and 19 display the desc code for
the other involved sensors, the laser range finder and the cameras on the
robotic head. Notice that the desc code is the same for all of them, except
the DES name, which is sonarsensor for the sonars belt, lasersensor for
the laser range finder and visionsensor for the cameras, due to they have
in common the same DES structure. Also observe how all of them use the
same type of port packet on their different ports, CTick on the input port
tick, and CMap on the output port sense.

des sonarsensor(none,none) /* no input parameter,

no output parameter */
{
input ports
{
tick: circular, CTick, 2;

};

output ports
{

sense: CMap;

};

entry state inactive

{

transition in tick;

};

state readandsend
{
transition in tick;
};
};

Figure 17: The desc description for the sonar sensor.

Figures 17, 18 and 19 show us how desc code to define a typical DES
looks like. The code describes the DES, in terms of input and output ports,
and states. And for each state, establishes which input port is activated
and when state transitions are possible. The framework implements input
ports in three ways: a circular buffer of port packets, a FIFO — a queue —
of port packets, and a growing FIFO of port packets. For each input port,
its type, length and port packet must be specified. Notice that one of the
states should be the entry state, where the default automaton enters when
goes to running state, shown in figure 4. Input and output parameters can

4 THE SOFTWARE FRAMEWORK 20

des lasersensor(none,none) /* no input parameter,
no output parameter */
{
input ports
{
tick: circular, CTick, 2;

};

output ports
{

sense: CMap;

};

entry state inactive

{

transition in tick;

};

state readandsend

{

transition in tick;
};
};

Figure 18: The desc description for the laser sensor.

des visionsensor(none,none) /* no input parameter,
no output parameter */
{
input ports
{
tick: circular, CTick, 2;

};

output ports
{

sense: CMap;

};

entry state inactive
{

transition in tick;

};

state readandsend
{

transition in tick;
};
};

Figure 19: The desc description for the vision sensor.

also be indicated, if any, DESs shown in the mentioned figures do not use
them. Comments may be added using C standard notation for comments.
Observe that nothing related to the default automaton, its states and
transitions, or related to the control and monitoring ports, ¢ and m, appears
in the description code. All this is transparently added by the compiler
to the Java subclasses which will be generated. Nothing is also declared

4 THE SOFTWARE FRAMEWORK 21

about what happens inside each state, that is, its inner functionality, mainly,
when a state change happens — a state transition —, and when output port
packets must be emitted through output ports. All this is part of the specific
functionality of each DES, and must be completed by the developer/user
after compilation in the Java subclasses generated by the compiler.

The desc code for the DES detect corresponding to figures 7 and 8, is
shown in figure 20. It does not have input and output parameters either.
Note that its input port sense accepts the same type of port packet, CMap,
which is issued by the sensors — the sonarsensor, the lasersensor, and the
visionsensor — on their respective sense output ports.

des detect(none,none) /* no input parameter,
no output parameterx/

{
input ports
{
sense: circular, CMap, 4;
freespace: circular, CFreeSpace, 2;
};

output ports

{
obstacles: CObstacles;
freespace: CFreeSpace;

};

entry state inactive

{

transition in sense;

};

state detect
{
transition in sense;
transition in freespace;
};
};

Figure 20: The desc description for the obstacles detector.

The avoid DES, figures 9 and 10, has the desc code displayed in figure
21. As the detect DES, it does not have input and output parameters
either.

Figure 22 shows the desc code for the avoidance compound DES, shown
in figure 15. In this description, DES and/or compound DES instances must
be specified. Furthermore, the inner mapping — local compound DES con-
nections among inputs and outputs ports — and the outer mapping — input
and output ports of the whole composition — may be indicated. Finally, the
combination among DES instances should be explicitly established. Con-
cretely, a concurrent composition among the three types of sensors has been
specified, and this concurrent composition is combined in a disabling way
with the detector DES and the obstacles avoidance DES, see section 3.1.4.

4 THE SOFTWARE FRAMEWORK 22

des avoid(none,none) /* no input parameter,
no output parameterx/
{
input ports
{
obstacles: circular, CObstacles, 2;

};

output ports
{

velocities: CVelocities;

};

entry state inactive

{

transition in obstacles;

};

state detect
{

transition in obstacles;
};
};

Figure 21: The desc description for the avoid DES.

In this way, the avoidance behavior works in the worst case, when only one
of the sensors is operative, and in the best case when all of them are. If the
obstacles detector DES, or the avoid DES finishes — either aborted, or with
success, or unsuccessfully —, the behavior will be finished too. Observe that
nothing related with control and monitoring ports, and the DES Executor
is indicated in this code, because it is part of the default behavior for each
compound DES, and as with DESs, it is also transparently added by the
compiler to the Java subclasses that are generated.

4.1.2 Compiler Verifications

During compilation the DES compiler desc performs a set of verifications
on the code, and when any of them is not fulfilled, the violation is noti-
fied and the compilation is aborted. The following summary resumes these
verifications.

On each DES, it verifies that:

e There is not a reuse of names for input and output ports and states,
i.e., if any input port, output port or state has been redefined.

e References to input ports are correct in state statements, that is, if
there is any input port reference which has not been defined.

e All DESs must have one and only one entry state.

e There is not an idle state, that is, a state without a cycle and without
transitions. A cycle in a state allows functionality in this state when

4 THE SOFTWARE FRAMEWORK 23

compound des avoidance
instances
sonarsensor sonarsensorl;
visionsensor visionsensorl;
lasersensor lasersensorl;
detect detectl;
avoid avoidi;

};

inner mapping

{
from sonarsensorl.sense to detectl.sense;
from visionsensorl.sense to detectl.sense;
from lasersensorl.sense to detectl.sense;
from detectl.freespace to detectl.freespace;
from detectl.obstacles to avoidl.obstacles;

};

outer mapping

{
input sonartick: sonarsensorl.tick;
input visiontick: visionsensorl.tick;
input lasertick: lasersensorl.tick;

output velocities: avoidl.velocities;
output freespace: detectl.freespace;

};

execute as [(sonarsensorl |
visionsensorl |
lasersensorl) # detectl # avoidl];

};

Figure 22: The desc description for the avoidance compound DES.

no input port packets are received. When a cycle is defined in a state
the developer/user will have a cycle function to fill in for this state
in the Java code generated by the DES Compiler, more precisely, in
the Java class which will embody the DES containing this state. The
cycle feature is not shown in this document.

On each compound DES, it verifies that:

There is not a reuse of names for instances, and input and output
ports, that is, if any instance, or input port or output port has been
redefined.

Instances definitions should be only referred to other defined DESs or
compound DESs.

There is no any kind of recursive definitions of instances, i.e., it is
not possible to define a compound DES containing an instance or
instances of itself, or containing an instance or instances of compound

4 THE SOFTWARE FRAMEWORK 24

DESs including, in turn, direct or indirectly, an instance or instances
of this compound DESs.

e References in inner and outer mappings are consistent with instance
definitions specified in the compound DES, i.e., if the referred in-
stances, input and output ports have been defined.

e Inner mapping connections are established among compatible input
and output ports , i.e., transporting the same type of port packets.

e The execute statement is referred to instances defined in the compound
DES, and each instance should be in the execute statement once and
only once.

e Qutput and input parameters match among instances in conditional
operators in the execute statement.

Thus, once, a set of developed DESs and compound DESs is available,
new assemblages and combinations are easily verified through compilation.

4.2 The Hierarchy of Java Classes DESpkg: The Software
Backbone

The Java classes hierarchy DESpkg is really the software backbone which
implements the concepts established in section 3. For each robotic system
described through a .des file, the desc compiler generates Java subclasses
in the context of this hierarchy of classes, which will constitute its software
skeleton, and will have to be completed by the developer /user.

To illustrate how the developer/user should complete the Java code gen-
erated by the compiler, and, at the same time, to outline the DESpkg set
of classes, we will have a look to part of the code generated by the desc
compiler for the example which has already been introduced along previous
sections, the obstacles avoidance behavior for a mobile robot, concretely, the
skeleton classes generated for DES detect and the compound DES avoid-
ance.

4.2.1 The DES detect

For each defined DES in a .des file, the desc compiler generates a Java class.
As a sample, appendix A shows the Java class generated by the compiler for
DES detect, corresponding to the desc code depicted in figure 20.

First of all, having a look to the code, observe that, there are a lot of
pairs of marks as comments, which may have one out of these three forms:

e either //<->section<->
and //<->/section<->,

4 THE SOFTWARE FRAMEWORK 25

e or //<->section<->state,port<->
and //<->/section<->state,port<->,

e or //<->section<->state<->
and //<->/section<->state<->.

Each pair of these marks delimits portions of code which could be modi-
fied by the compiler in future compilations, so there, the developer /user does
not have to add any code, otherwise it will be lost in the next compilation, if
any. On the contrary, all code added by the developer/user situated outside
of any of these pairs of marks will be preserved among desc compilations.
Thus, if the description code for a DES is modified and compiled, the previ-
ous code already added by the developer is not missed, but preserved, if it
has been added outside of any of these pair of marks. In general, as it will be
seen later, the compiler adds these kinds of marks to all code that it creates,
not only to the one corresponding to DESs descriptions, and, the rule is the
same, code to be preserved among compilations should be added outside of
these pairs of marks. Furthermore, all these marks should be preserved as
they have been generated by the compiler, because any mark alone without
its partner will cause a compilation error. The compiler does not protect
all it generates with these marks, it only protects in this way things which
might change among compilations. The compiler also generates code which
remains invariant among compilations which is not protected with marks,
and which is preserved along successive compilations, but only generated the
first time, so it should not be modified by the developer/user, because the
compiler does not verify in consecutive compilations if this code has been
modified or not. To conclude, as rules which are a must for developers/users
when they are completing any class generated by the compiler, the next two
rules must be observed:

e Any code generated by the compiler must strictly be preserved without
changes, even any comment, and specially, the mentioned pairs of
marks.

e Any code added by developers/users must be situated outside of the
portions of code delimited by the pairs of marks generated by the
compiler.

According to desc code, in figure 20, corresponding to DES detect, the
compiler has generated the Java class CDESdetect which is a subclass of
the DESpkg class CDES; see appendix A, where CDESdetect appears as
it was generated first. CDESdetect constitutes the skeleton to implement
the DES detect.

In this framework, the functionality of each DES will be coded on the
transitions among the automaton states, including the transitions corre-
sponding to the default automaton in figure 4. The desc code for a DES

4 THE SOFTWARE FRAMEWORK 26

only specifies for each one of its states what input ports could be listened
to, thus, meaning that, only a part of the infrastructure of the DES is con-
structed by the compiler, its skeleton, the rest must be completed by the
developer/user. Specifically, the compiler generates on each state a function
to fill in, corresponding to each input port that can be listened to in that
state. Figure 23 displays a sample from the code generated for DES detect,
appendix A, showing the function which should be completed for its state
inactive corresponding to an input port packet on its input port sense.

In the figure the function has already been filled in. Notice how the
transition to state detect must be specified explicitly. Obviously, the added
code has been included outside the marks which define the body of the
function generated by the compiler, as it was said in previous paragraphs,
just to preserve the code from future desc code modifications.

Figures 24 and 25 show the functions created by the compiler for the state
detect with each one of the input ports activated in this state according to
desc code in figure 20. In these figures and figure 23, the functions used to
send an output port packet through an output port and to transit to other
state are implemented on the DES super class CDES, but other several func-
tions, also used in the code appearing in the figures, are supposed to be im-
plemented in some other place by the developer/user. For example, the func-
tion member ProcessMap(CMap ppCMap, CObstacles ppObstacles)
which performs object detection from sensory data contained on the port
packet ppCMap and returns the result already packed on CObstacles,
which is a port packet that may be sent directly through the output port
obstacles. There are no restrictions to implement data and function mem-
bers in the skeleton class to complete the expected functionality for a specific
DES, obviously, always that, compiler marks are preserved. Observe that
in terms of Java, these skeleton classes are also Java classes, so, may be
linked without any restrictions with whatever other Java code, for example,
a driver for a sensor, a math library, etc.

Functions corresponding to transitions among default automaton states
are already implemented in the super class CDES, but they are imple-
mented as idle functions — they do nothing —. These functions can be over-
ridden in the subclass, if necessary. To illustrate this extend, the member
function _Started() displayed in figure 26 has been overridden in class CDES-
detect. Particularly, this function is called when the automaton gets into
the entry state of the automaton once a running port packet — ¢, — has
been received and the transition to the entry state have been completed, see
figure 4. This function was intended as the typical place to write code to
allocate the necessary resources to execute conveniently the user automaton,
and a fail in this allocation will provoke a transition to the fail state of the
default automaton as shown in the figure, otherwise the automaton remains
in the entry state continuing execution. In any case, keep in mind that the
decision to override a default automaton transition, which typically has an

4 THE SOFTWARE FRAMEWORK 27

//<->begintransition<->inactive,sense<->
// Funtion pointer definition for transition sense in state inactive.
private static class Cinactivesense implements IFunctionPointer

{

public void Function(Object oParam)
{
CDESdetect thisCDESdetect=(CDESdetect) oParam;
CMap ppCMap=(CMap) thisCDESdetect._ppCurrentPacket;
// State inactive: here starts your code
//<->/begintransition<->inactive,sense<->

// BEGIN: Added code

// get output port packet CObstacles
CObstacles ppObstacles=thisCDESdetect._obOutputBox.GetPortPacket (i0OP_obstacles);

// process sensory data
ProcessMap(ppCMap,ppObstacles) ;

if (ppObstacles.IsAnyObstacle()) // Is there any obstacle?

{
// send out CObstacles output port packet
thisCDESdetect._obOutputBox.SendPortPacket (i0P_obstacles);

}
else // No obstacles
{
// send a CFreeSpace output port packet
thisCDESdetect._obOutputBox.SendPortPacket (i0P_freespace);
}

// transit to detect state
thisCDESdetect._SetState(iS_detect);

// END: Added code

//<->endtransition<->inactive,sense<->
// State inactive: here ends your code
}
}

//<->/endtransition<->inactive,sense<->

Figure 23: State inactive with a port packet on its input port sense.

idle default implementation, is up to the developer/user depending on the
expected automaton functionality, and all its corresponding code must be
explicitly added by him/her to the classes generated by the compiler.
Figure 26 also shows how internal events have been implemented. There,
the internal event fail is just the boolean return value of function AllocateRe-
sources(). If it were implemented literally — see section 3.1, the automaton
would have to have an extra input port, an extra output port, and an extra
type of port packet definition, and besides, each time the event occurs, the
automaton should emit a port packet to signal the event occurrence to itself.
Skeleton classes for port packets are also created by the compiler, ap-
pendices C.1, C.2 and C.3, respectively, show the classes generated for port
packets CMap, CFreeSpace and CObstacles, which are used in DES de-

4 THE SOFTWARE FRAMEWORK 28

//<->begintransition<->detect,sense<->
// Funtion pointer definition for transition sense in state detect.
private static class Cdetectsense implements IFunctionPointer

{

public void Function(Object oParam)
{
CDESdetect thisCDESdetect=(CDESdetect) oParam;
CMap ppCMap=(CMap) thisCDESdetect._ppCurrentPacket;
// State detect: here starts your code
//<->/begintransition<->detect,sense<->

// BEGIN: Added code

// get output port packet CObstacles
CObstacles ppObstacles=thisCDESdetect._obOutputBox.GetPortPacket (i0OP_obstacles);

// process sensory data
ProcessMap(ppCMap,ppObstacles) ;

if (ppObstacles.IsAnyObstacle()) // Is there any obstacle?
{
// send out the obstacles port packet
thisCDESdetect._obOutputBox.SendPortPacket (i0P_obstacles);
}
else // No obstacles
{
// send a CFreeSpace port packet
thisCDESdetect._obOutputBox.SendPortPacket (i0P_freespace);
}

// END: Added code

//<->endtransition<->detect,sense<->
// State detect: here ends your code
}

}
//<->/endtransition<->detect,sense<->

Figure 24: State detect with a port packet on its input port sense.

tect, as they were created first by the compiler, and note how all of them
are subclasses of the DESpkg class CPortPacket. They must implement,
at least, a copy method, as these appendices show. But besides, could also
implement its own functionality — data and function members —, as the func-
tion member IsAnyObstacle() for port packet CObstacles which is called
on functions displayed in figures 23 and 24.

In short, using this software framework, the structure for an automa-
ton defining a simple DES must be completed at this level of filling-in the
skeleton, because it is only at this level where primitives to perform states
transitions, to make decisions based on the port packets, to send output
port packets and to code internal events, are available.

Additionally the compiler will create skeleton classes too, for input and
output parameters, if any. All input and output parameters, as other skele-
ton classes already introduced, are also subclasses of another class, ISel-

4 THE SOFTWARE FRAMEWORK 29

//<->begintransition<->detect,freespace<->
// Funtion pointer definition for transition freespace in state detect.
private static class Cdetectfreespace implements IFunctionPointer

{
public void Function(Object oParam)
{
CDESdetect thisCDESdetect=(CDESdetect) oParam;
CFreeSpace ppCFreeSpace=(CFreeSpace) thisCDESdetect._ppCurrentPacket;
// State detect: here starts your code
//<->/begintransition<->detect,freespace<->

// BEGIN: Added code

// transit to inactive state
thisCDESdetect._SetState(iS_inactive);

// END: Added code

//<->endtransition<->detect,freespace<->
// State detect: here ends your code
}
}
//<->/endtransition<->detect,freespace<->

Figure 25: State detect with a port packet on its input port freespace.

protected void _Started()

{
if(!AllocateResources()) // Is there anything wrong?
{

// Transit to fail state in the default automaton
_SetFailState();
}
}

Figure 26: CDES class overridden function.

fReplication, which is a Java interface provided by DESpkg. Note that
this feature has not been used in the example shown in this document.

4.2.2 The Compound DES avoidance

Appendix B shows the Java class CCoDESavoidance generated first by
the compiler corresponding to the compound DES avoidance, figure 15,
from its description code in figure 22. DESpkg implements compound
DESs through derivation of class CCompoundDES, as it can be seen in
appendix B. Classes generated by the compiler corresponding to compound
DESs are not skeleton classes, they do not have to be filled in, they can be
used directly as they have been created first by the compiler, but, in any case,
the compiler also interleaves pairs of marks indicating where developer/user
code can not be added, although, these classes usually do not need to be
completed.

5 CONCLUSIONS 30

5 Conclusions

With respect to the goals expressed in section 2, a software architecture has
been devised and built, which establishes a formal definition for a software
component for robotic systems, and a formal definition for combinations of
these software components in a way that eases its reusability and deploy-
ment.

The software framework was put into practice and tested through non
real examples, and during evaluation various limitations and ideas arose that
were not though initially, and are commented next.

5.1 Current Limitations and Future Work

Future work is very related to current limitations, and the following points
express some of these limitations and, at the same time, possible trends to
follow in future improvements.

e Automata Mapping. The current architecture maps port automata
into implementations using two levels of abstraction: the desc com-
piler and the hierarchy of Java classes DESpkg. The automaton can
only be completed at the last level, DESpkg, because primitives to
perform state transitions, to make decisions based on the port pack-
ets, and to implement internal events are only available at this level.
Complete automata mapping at first level, the compiler, might be pos-
sible if such primitives were also available at compiler level. Automata
mapping at compiler level could allow verifying automaton stability,
automaton isolated states, etc, at compilation.

e Software Deployment. Normally to complete the skeleton of a DES,
it is necessary to link the skeleton class generated by the compiler with
some other library or libraries provided by the developer/user, this in-
formation is not present anywhere in the architecture at this moment.
Software deployment would only be possible if the software architec-
ture disposed of such a information, for example, adding information
about linking and libraries in the description code for each DES, for
each port packet, for each input and output parameter, and even, for
each, compound DES.

e A Combination Language. Once a set of DESs and compound
DESs has been developed and tested enough, and can be used to con-
struct a complex robotic system, the fact of having a quite static and
rigid way of combining DESs and compound DESs arises. It looks
necessary to devise a more dynamic and complex way — a combina-
tion language — to combine DESs and compound DESs which makes
possible to program a robotic system in terms of components, that is,

6 ACKNOWLEDGEMENTS 31

in terms of DESs and compound DESs, and such a language needs to
keep the formality of process algebra, because in this way it is possi-
ble to argue that such combinations are also port automata. Besides,
just to enumerate, several points might deserve future considerations
in this language:

— fail recovering: there should be mechanisms for fail detection
and recovering. At this moment there is no mechanism for fail
recovering, a fail implies a transition to fail state, and then it is
possible to restart execution or just kill the automaton, see figure
4.

— timing information: information about worst working periods
for a DES | its priorities, its working latencies, watch-dog timers,
etc, and means to module such information dynamically.

e Porting to C++4. The current architecture implementation in Java
classes is quite slow for low level components. Porting it to C++
makes sense as we want to apply it on real robotic systems.

e Distributed Framework. At this moment the architecture is not
distributed. Robotic systems usually involve multiple computers, fu-
ture versions should be distributed

e Tools. Different tools could be quite usable and valuable, for exam-
ple, graphical tools as a graphical DES designer and a graphical DES
composer, debugging tools as a DES debugger, etc.

6 Acknowledgements

This work was performed during a seven-month stay of one of the authors,
Mr. Antonio C. Dominguez-Brito, at the Centre for Autonomous Systems,
Royal Institute of Technology, Stockholm, Sweden, from October 1999 to
April 2000. The authors would like to thank the institutions which made
this stay possible: the Margit and Folke Perhzon Foundation, the
Centre for Autonomous Systems and the University of Las Palmas
de Gran Canaria, because without their support this work would never
have been performed.

References

[1] M. Andersson, A. Orebick, M. Lindstrém, and H. I. Christensen. ISR:
an Intelligent Service Robot. Lecture Notes in Artificial Intelligence,
Heidelberg, Springer Verlag, 1999. Intelligent Sensor Based Robotics,
ch. To appear.

REFERENCES 32

2]

[10]

[11]

[12]

R. C. Arkin. Integrating Behavioral, Perceptual and World Knowledge
in Reactive Navigation. Robotics and Autonomous Systems, 6:105-122,
1990.

R. C. Arkin and T. Balch. AuRA: Principles and Practice in Review.
College of Computing, Georgia Institute of Technology, Mobile Robot
Laboratory, Atlanta, Georgia 30332, 1997. Report.

R. J. Firby. Task Networks for Controlling Continuous Processes. Sec-
ond International Conference on Al Planning Systems, pp. 49-54, 1994.

E. Gat. Integrating Planning and Reacting in a Heterogeneous Asyn-
chronous Architecture for Controlling Real-World Mobile Robots. Pro-
ceedings of the TAAA Conference, 1992.

K. Konolige, K. Myers, A. Saffiotti, and E. Ruspini. The Saphira Ar-
chitecture: a Design for Autonomy. Journal of Exzperimental and The-
oretical Artificial Intelligence, 9:215-235, 1997.

S. Fleury, M. Herrb, and R. Chatila. G*”0oM: a Tool for the Specification
and the Implementation of Operating Modules in a Distributed Robot
Architecture. TROS 97, Grenoble, France. LAAS Report 97244, 1997.

P. J. Ramadge and W. M. Wonham. The Control of Discrete Event
Systems. Proceedings of the IEEE, 77(1):81-97, 1989.

M. Steenstrup, M. A. Arbib, and E. G. Manes. Port Automata and
the Algebra of Concurrent Processes. Journal of Computer and System
Sciences, 27:29-50, 1983.

D. M. Lyons and M. A. Arbib. A Formal Model of Computation for
Sensory-Based Robotics. IEEFE Transactions on Robotics and Automa-
tion, 5(3):280-293, June 1989.

D. M. Lyons. A Process-Based Approach to Task Representation. IEEE
Proceedings Robotics and Automation, pages 2142-2147, 1990.

J. Kosecka. Supervisory Control Theory of Autonomous Mobile Agents.
PhD thesis, University of Pennsylvania, GRASP Laboratory, February
1996.

J. Koseckd, H. I. Christensen, and R. Bajcsy. Experiments in Behavior
Composition. Robotics and Autonomous Systems, 19:287-298, March
1997.

D. B. Stewart. Real-Time Software Design and Analysis of Recon-
figurable Multi-Sensor Based Systems. PhD thesis, Carnegie Mellon
University, Dept. Electrical and Computing Engineering, Pittsburgh,
1994.

A THE DES DETECT: THE CDESDETECT CLASS 33

[15] D. B. Stewart, R. A. Volpe, and P. K. Khosla. Design of Dynamically
Reconfigurable Real-Time Software Using Port-Based Objects. IEEFE
Transactions on Software Engineering, 23(12):759-776, December 1997.

[16] D.B. Stewart and P. Khosla. Chimera 3.1: the Real-Time Operating
System for Reconfigurable Sensor-Based Control Systems. Advanced
Manipulators Laboratory, The Robotics Institute and Department of
Electrical and Computer Engineering, Carnegie Mellon University, Jan-
uary 1993.

[17] D.B. Stewart and P. Khosla. The Chimera Methodology: Designing
Dynamically Reconfigurable and Reusable Real-Time Software using

Port-Based Objects. International Journal of Software Engineering and
Knowledge Engineering, 6(2):249-277, June 1996.

A The DES detect: the CDESdetect class

//<->header<->
/*
* File: CDESdetect.java
* Compiled by: DES Compiler vO.1 (desc)
* Date: Tue 16 May 2000 13:35:53
*/
//<->/header<->

package DESpkg;

//<->definition<->
public class CDESdetect extends CDES {

private static CInstancesNaming _inanaming=new CInstancesNaming("CDESdetect");
//<->/definition<->

//<->inputportsids<->
// User defined input ports
public static final int iIP_sense=1;
public static final int iIP_freespace=2;
//<->/inputportsids<->

//<->inputportsconfigs<->
// Input ports configuration data
public static final CInputBox.CInputPortConfiguration[] aipcIP_PORTS=
{
// iIP_CONTROL
ipcIP_CONTROL,
// iIP_sense
new CInputBox.CInputPortConfiguration("DESpkg.CCircularPort",
"DESpkg.CMap",
4,
// iIP_freespace
new CInputBox.CInputPortConfiguration("DESpkg.CCircularPort",
"DESpkg.CFreeSpace",
2)
};
//<->/inputportsconfigs<->

//<->outputportsids<->

A THE DES DETECT: THE CDESDETECT CLASS

// User defined output ports

public static final int iOP_obstacles=1;

public static final int i0P_freespace=2;
//<->/outputportsids<->

//<->outputportsconfigs<->
// Output ports configuration data
public static final String[] asOP_PORTS=
{
sOP_MONITORING, // iOP_MONITORING
"DESpkg.CObstacles", // iDP_obstacles
"DESpkg.CFreeSpace" // i0P_freespace
}
//<->/outputportsconfigs<->

//<->statesids<->
// User defined states Ids
public static final int iS_inactive=b;
public static final int iS_detect=6;
//<->/statesids<->

//<->statesnames<->
// States names
private static final String[] _asstateNames=
{
asStateNames[iS_IDLE],
asStateNames[iS_RUNNING],
asStateNames[iS_SUCCESS],
asStateNames[iS_ABORT],
asStateNames[iS_FAIL],
"inactive",
"detect"
};
//<->/statesnames<->

//<->statesmasks<->
// States masks
private static final boolean[][] _aabostateMasks=
{
// iS_IDLE
{
true, // iIP_CONTROL
false, // iIP_sense
false // iIP_freespace
3,

// iS_RUNNING (not necessary, but it must be a position for this state)

{
true, // iIP_CONTROL
false, // iIP_sense
false // iIP_freespace

3,

// iS_SUCCESS

{
true, // iIP_CONTROL
false, // iIP_sense
false // iIP_freespace

3,

// iS_ABORT

{
true, // iIP_CONTROL
false, // iIP_sense
false // iIP_freespace

34

A THE DES DETECT: THE CDESDETECT CLASS

3,

// iS_FAIL

{
true, // iIP_CONTROL
false, // iIP_sense
false // iIP_freespace

3,

// iS_inactive

{
true, // iIP_CONTROL
true, // iIP_sense
false // iIP_freespace

3,

// iS_detect

{
true, // iIP_CONTROL
true, // iIP_sense
true // iIP_freespace

}

};
//<->/statesmasks<->

//<->statestransitionsdefs<->
//<->begintransition<->inactive,sense<->
// Funtion pointer definition for transition sense in state inactive.
private static class Cinactivesense implements IFunctionPointer
{
public void Function(Object oParam)
{
CDESdetect thisCDESdetect=(CDESdetect) oParam;
CMap ppCMap=(CMap) thisCDESdetect._ppCurrentPacket;
// State inactive: here starts your code
//<->/begintransition<->inactive,sense<->

//<->endtransition<->inactive,sense<->
// State inactive: here ends your code
}
}
//<->/endtransition<->inactive,sense<->
//<->begintransition<->detect,sense<->
// Funtion pointer definition for transition sense in state detect.
private static class Cdetectsense implements IFunctionPointer
{
public void Function(Object oParam)
{
CDESdetect thisCDESdetect=(CDESdetect) oParam;
CMap ppCMap=(CMap) thisCDESdetect._ppCurrentPacket;
// State detect: here starts your code
//<->/begintransition<->detect,sense<->

//<->endtransition<->detect,sense<->
// State detect: here ends your code
}
}
//<->/endtransition<->detect,sense<->
//<->begintransition<->detect,freespace<->

// Funtion pointer definition for transition freespace in state detect.

private static class Cdetectfreespace implements IFunctionPointer
{

public void Function(Object oParam)

35

A THE DES DETECT: THE CDESDETECT CLASS

{
CDESdetect thisCDESdetect=(CDESdetect) oParam;
CFreeSpace ppCFreeSpace=(CFreeSpace) thisCDESdetect._ppCurrentPacket;
// State detect: here starts your code
//<->/begintransition<->detect,freespace<->

//<->endtransition<->detect,freespace<->
// State detect: here ends your code
}
}
//<->/endtransition<->detect,freespace<->
//<->/statestransitionsdefs<->

//<->statestransitionsmatrix<->
// Matrix of transitions (function pointers) for each state
private final IFunctionPointer[][] _aafpstateCallbacks=
{
// iS_IDLE
{
new CDES.CIdleControlPacket(), // iIP_CONTROL
null, // iIP_sense
null // iIP_freespace
3,
// iS_RUNNING (not necessary, but it must be a position for this state
{
new CDES.CEntryControlPacket(), // iIP_CONTROL
null, // iIP_sense
null // iIP_freespace
3,
// iS_SUCCESS
{
new CDES.CSuccessAbortFailControlPacket(), // iIP_CONTROL
null, // iIP_sense
null // iIP_freespace
3,
// iS_ABORT
{
new CDES.CSuccessAbortFailControlPacket(), // iIP_CONTROL
null, // iIP_sense
null // iIP_freespace
3,
// iS_FAIL
{
new CDES.CSuccessAbortFailControlPacket(), // iIP_CONTROL
null, // iIP_sense
null // iIP_freespace
3,
// iS_inactive
{
new CDES.CEntryControlPacket(), // iIP_CONTROL
new Cinactivesense(), // iIP_sense
null // iIP_freespace
3,
// iS_detect
{
new CDES.CEntryControlPacket(), // iIP_CONTROL
new Cdetectsense(), // iIP_sense
new Cdetectfreespace() // iIP_freespace
}
};

//<->/statestransitionsmatrix<->

36

A THE DES DETECT: THE CDESDETECT CLASS

//<->statescyclesdefs<->
// None
//<->/statescyclesdefs<->

//<->statescyclesvector<->
// Nothing (no cycles)
//<->/statescyclesvector<->

// BEGIN: Local variable space (advisable a private modifier for them)

// END: Local variable space

//<->constructor<->
public CDESdetect()
//<->/constructor<->
{
_sInstanceName=_inanaming.NewName () ;
_sName=_sInstancelName;

_ibInputBox=new CInputBox(aipcIP_PORTS);
_obQutputBox=new COutputBox(as0P_PORTS);

//<->entrystate<->
_iEntryState=iS_inactive;
//<->/entrystate<->
}

public boolean IsInvalid() { return false; }

public String GetStateName(int iState)

{
if (iState==iS_DEAD) return "Dead";
if ((iState<0) || (iState>=_asstateNames.length)) return null;
return _asstateNames[iState];

}

public COutputBox.CInputPortRef GetInputPortRef(int ilInputPort)

{
if((iInputPort<0) || (iInputPort>=aipcIP_PORTS.length)) return null;
return new COutputBox.CInputPortRef(_ibInputBox,iInputPort);

}

public Object Connect(int iPort, COutputBox.CInputPortRef iprInputPortRef)
throws CPortPacketMismatchException
{ return _obOutputBox.Connect(iPort,iprInputPortRef); }

public boolean Disconnect(int iPort,0Object oInputDescriptor)
{ return _obOutputBox.Disconnect(iPort,oInputDescriptor); }

public void DisconnectAll() { _obOutputBox.DisconnectAll(); }

public void run()

{
if(IsInvalid()) return;

_Launched();
_SetState(iS_IDLE);
_ppCurrentPacket=null;
_iCurrentInputPort=-1;

B THE COMPOUND DES AVOIDANCE

while(_iCurrentState!=iS_DEAD)
{
//<->runningkernel<->
_waitAndTransition();
//<->/runningkernel<->

// NOTE: Just release the cpu (necessary with green threads)
try { Thread.sleep(0); } // Release the cpu (Green threads)
catch(InterruptedException ieException) { /* Nothing */ }
}
}

private void _waitAndTransition()
{
try
{
_iCurrentInputPort=_ibInputBox.WaitForSomething();
_ppCurrentPacket=_ibInputBox.GetPortPacket (_iCurrentInputPort);
if (_aafpstateCallbacks[_iCurrentState] [_iCurrentInputPort]!=null)
_aafpstateCallbacks[_iCurrentState] [_iCurrentInputPort].Function(this);
}
catch(InterruptedException ieException) { _SetDeadState(); }
}

38

protected boolean[] _GetStateMask(int iState) { return _aabostateMasks[iState]; }

//<->inputparam<->

//No input param
//<->/inputparam<->
}

B The Compound DES avoidance

//<->header<->
/*
* File: CCoDESavoidance.java
* Compiled by: DES Compiler v0.1 (desc)
* Date: Tue 16 May 2000 13:35:53
*/
//<->/header<->

package DESpkg;

//<->definition<->
public class CCoDESavoidance extends CCompoundDES {

private static CInstancesNaming _inanaming=new CInstancesNaming("CCoDESavoidance");

//<->/definition<->

//<->instancesids<->
// Ids for DES instances
public static final int iINSTANCES=5;
public static final int iINS_sonarsensor1=0;
public static final int iINS_visionsensori=i;
public static final int iINS_lasersensorl=2;
public static final int iINS_detect1=3;
public static final int iINS_avoidi=4;
//<->/instancesids<->

//<->innermappinglength<->

B THE COMPOUND DES AVOIDANCE 39

// Inner mapping
public static final int iINNER_MAPPING_REFS=5;
//<->/innermappinglength<->

//<->inputportsids<->
// Outer mapping: input ports
public static final int iINPUT_PORTS=3;
public static final int iIP_sonartick=1;
public static final int iIP_visiontick=2;
public static final int iIP_lasertick=3;
//<->/inputportsids<->

//<->outputportsids<->
// Outer mapping: output ports
public static final int iOUTPUT_PORTS=2;
public static final int iOP_velocities=1;
public static final int i0P_freespace=2;
//<->/outputportsids<->

//<->constructor<->
public CCoDESavoidance()
//<->/constructor<->
{

_sInstanceName=_inanaming.NewName () ;

//<->instancescreation<->
//DES instances creation
_adesInstances=new CDES[iINSTANCES];
_adesInstances[iINS_sonarsensori]=new CDESsonarsensor();
_adesInstances[iINS_visionsensori]=new CDESvisionsensor();
_adesInstances[iINS_lasersensori]=new CDESlasersensor();
_adesInstances[iINS_detecti]=new CDESdetect();
_adesInstances[iINS_avoidl]=new CDESavoid();
//<->/instancescreation<->

//<->innermappingcreation<->
// Inner mapping creation
_amrSourcePorts=new CMappingRef [1INNER_MAPPING_REFS];
_amrDestinationPorts=new CMappingRef [iINNER_MAPPING_REFS];
_amrSourcePorts[0]=new CMappingRef (iINS_sonarsensorl,CDESsonarsensor.iQP_sense);
_amrDestinationPorts[0]=new CMappingRef (iINS_detectl,CDESdetect.iIP_sense);
_amrSourcePorts[1]=new CMappingRef(iINS_visionsensorl,CDESvisionsensor.iOP_sense);
_amrDestinationPorts[1]=new CMappingRef (iINS_detectl,CDESdetect.iIP_sense);
_amrSourcePorts[2]=new CMappingRef (iINS_lasersensorl,CDESlasersensor.i0P_sense);
_amrDestinationPorts[2]=new CMappingRef (iINS_detectl,CDESdetect.iIP_sense);
_amrSourcePorts[3]=new CMappingRef (iINS_detectl,CDESdetect.i0OP_freespace);
_amrDestinationPorts[3]=new CMappingRef (iINS_detectl,CDESdetect.iIP_freespace);
_amrSourcePorts[4]=new CMappingRef (iINS_detectl,CDESdetect.i0OP_obstacles);
_amrDestinationPorts[4]=new CMappingRef (iINS_avoidi,CDESavoid.iIP_obstacles);
//<->/innermappingcreation<->

//<->inputportscreation<->
// Outer mapping creation: input ports
_amrInputPorts=new CMappingRef [iINPUT_PORTS];
_amrInputPorts[iIP_sonartick-1]=
new CMappingRef (iINS_sonarsensorl,CDESsonarsensor.iIP_tick);
_amrInputPorts[iIP_visiontick-1]=
new CMappingRef (iINS_visionsensor1l,CDESvisionsensor.iIP_tick);
_amrInputPorts[iIP_lasertick-1]=
new CMappingRef (iINS_lasersensorl,CDESlasersensor.iIP_tick);
//<->/inputportscreation<->

C THE PORT PACKETS

//<->outputportscreation<->
// Outer mapping creation: output ports
_amrQutputPorts=new CMappingRef [i0UTPUT_PORTS];
_amrOutputPorts[i0P_velocities-1]=new CMappingRef (iINS_avoidl,CDESavoid.iOP_velocities);
_amrOutputPorts [i0P_freespace-1]=new CMappingRef (iINS_detectl,CDESdetect.i0P_freespace);
//<->/outputportscreation<->

//<->executiontreecreation<->
// Execution tree creation

CExeTree.
CExeTree.
CExeTree.
CExeTree.
CExeTree.
CExeTree.
CExeTree.
CExeTree.
CExeTree.

CNode
CNode
CNode
CNode
CNode
CNode
CNode
CNode
CNode

nTree0=CExeTree.
.CreateLeafNode (iINS_visionsensorl);

.CreateOpNode (CExeTree.iCONCURRENT ,nTree0,nTreel) ;
nTree3=CExeTree.
.CreateOpNode (CExeTree.iCONCURRENT,nTree2,nTree3) ;
nTree5=CExeTree.
nTree6=CExeTree.
nTree7=CExeTree.
.CreateOpNode (CExeTree.iDISABLING,nTree6,nTree7) ;

nTreel=CExeTree
nTree2=CExeTree

nTree4=CExeTree

nTree8=CExeTree

_nExeTree=nTree8;
//<->/executiontreecreation<->

}
}

40

CreateLeafNode (iINS_sonarsensori);

CreateLeafNode (iINS_lasersensori);

CreatelLeafNode (iINS_detectl);
CreateOpNode (CExeTree.iDISABLING,nTree4,nTree5) ;
CreateLeafNode (iINS_avoidl);

C The Port Packets
C.1 The CMap class

//<->header<-

/%

>

* File: CMap.java
* Compiled by: DES Compiler vO.1 (desc)
* Date: Tue 16 May 2000 13:35:53

*/

//<->/header<->

package DESpkg;

//<->definition<->
public class CMap extends CPortPacket

//<->/definition<->

{

// The Copy method is mandatory, you must implement it. The rest it is up to you.
public boolean Copy(CPortPacket ppPacket)

{

if (ppPacket==null) return false;
//<->functioncast<->

CMap ppCMap=(CMap) ppPacket;
//<->/functioncast<->

// Your copy code starts here

// Your copy code ends here
return true;

}

C THE PORT PACKETS

C.2 The CFreeSpace class

//<->header<->
/*
* File: CFreeSpace.java
* Compiled by: DES Compiler v0.1 (desc)
* Date: Tue 16 May 2000 13:35:53
*/
//<->/header<->

package DESpkg;

//<->definition<->

public class CFreeSpace extends CPortPacket
//<->/definition<->

{

// The Copy method is mandatory, you must implement it.

public boolean Copy(CPortPacket ppPacket)
{
if (ppPacket==null) return false;
//<->functioncast<->
CFreeSpace ppCFreeSpace=(CFreeSpace) ppPacket;
//<->/functioncast<->
// Your copy code starts here

// Your copy code ends here
return true;

}

C.3 The CObstacles class

//<->header<->
/*
* File: CObstacles.java
* Compiled by: DES Compiler v0.1 (desc)
* Date: Tue 16 May 2000 13:35:53
*/
//<->/header<->

package DESpkg;

//<->definition<->

public class CObstacles extends CPortPacket
//<->/definition<->

{

// The Copy method is mandatory, you must implement it.

public boolean Copy(CPortPacket ppPacket)
{
if (ppPacket==null) return false;
//<->functioncast<->
CObstacles ppCObstacles=(CObstacles) ppPacket;
//<->/functioncast<->
// Your copy code starts here

// Your copy code ends here
return true;

}

41

The rest it is up to you.

The rest it is up to you.

C THE PORT PACKETS

42

